Amenazas a la biodiversidad:
Pérdida y degradacion del habitat
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Degradacion de |los ecosistemas

Figure 5PM 7 Hurman activity has changed the surface of the planet in profound and
far-reaching ways.
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Degradacion de los ecosistemas

Figurs 5FM 1 Land degradation is a pervasive, systemic phenomenon: it occurs in all parts of
the terrestrial world and can take many forms.
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Figure 5PM @ Land degradation affects countries of all income levels and at all levels of human
development.

Samaaf he most degracad amaas i the world; such & Western Europs and parls of Australia, ane also the high GOP counties.
Howrewer, the negative impacts of land degradaton on buman wall-being are ey to be more pranaunced in koestions whare
degradation overaps with poverty, low Instituticnal capacity and weak. social salety nets, In this map, countries ae coloured according
10 e Hufrsn Devslopment index (HO scor ™ wiils iass of 2ol arganic carbon ralathe o estimated orginal conditon iona mokcaton
of lardd degradation) isillustrated by thelightness o darkeness of each pikal. HDI is & carrgasita statistic that is commonby wsed fo
Indicata human development based on data on education, llle expectancy and per capita incomea. Tharge In-sol crganic carbon s
imadelled retatve to estimated quantites pnor 10 antbrogogenks and wse and land cover change. Source! Data on 2ol srganic caetan
frorm \Man der BEsch et al, (2071 77! and Stoareagst ef an (2017

High = [
Ma:zliurrl HTd Mo

Lizaw HOH clsmg Hlana
ko HOH data

=100% - 3% -G i 20 D%

Scholes et al. (2018) Summary for policymakers of the assessment
report on land degradation and restoration. IPBES



Degradacion de los ecosistemas

Figure 4.2 Extent of land area cultivated globally by the year 2000, Reprinted from MEA (2005),

Sohdi & Ehrlich (2010) Conservation Biology for All. Oxford Univ Press
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Biomas del mundo

Figure 2. The map of terrestrial ecoregions of the world recognizes 867 distinct units,
roughly a fourfold increase in biogeographic discrimination over that of the 193 units of
Udvardy (1975). Maps of freshwater and marine ecoregions are similarly needed for
conservation planning.

Fuente: Olson et al. (2001) BioScience 51: 933-938
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Figure 1. Anthropogenic biomes: world map and vegional areas. Biomes are organized into groups (Table 1), and sorted i order of
population density. Map scale = 1:160000 000, Plate Carrée projection (geographic), 5 arc minute resolution (5’ = 0.0833°).
Regional biome areas are detailed in WebTable 3; WebPanel 2 provides interactive versions of this map.

Fuente: Ellis & Ramakutty (2008) Front. Ecol. Environ. 8: 439-447
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Figure 4 Map of crisis ecoregions. Vulnerable, Endangered, and Critically endangered, ecoregions were classified as described in text and
shown in Fig. 3.

Fuente: Hoekstra et al. (2005) Ecol. Lett. 8: 23-29
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Figure 1 Habitat conversion and protection in the world’s 13
terrestrial biomes, Biomes are ordered by their Conservanon Risk
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Figure SPM 8 Status, trend and extent of direct drivers of land degradation across subregions

globally.
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Fragmentacion de bosques
tropicales y emision de carbono
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Figure 3 | Worldwide carbon emissions due to fragmentation of tropical forests. (a) Colours represent the estimated carbon losses for each fragment,
setting edge depth d to 100 m and relative carbon losses in forest edges e to 50%. Insets illustrate exemnplary regicnal carbon emissions for (b) tropical
America (89.752 W, 13.515 N), (e tropical Africa (17.206 E, 4.499 5) and (d) tropical South-East Asia (103.898 E, 3.091 5}

Brinck et al. (2017) Nature Communications 8: 14855



Ejemplo: Destruccion de habitat en
el Norte de Cdordoba

Lowiand vegetation  Halophytic vegetation

B Eastern Chaco Forest [l Short Halophytic Shrubland
B Western Chaco Forest Tall Halophytic Grassland
I Secandary Forest B Tall Sub-halophytic Shrubland

Mountain vegetation Other

B Mountain Woodland Cultural Wegetation
Mountain Shrubland Water
Palm Savanna | Bare Soil

Fig. 1. Thematic maps for the study area: (a) 1969 map; (b} 1999 map. Comncident colors in both maps identify the same land cover types. The South
American map shows the location of the study area (pointed with an arrow) at the southern edge of the Gran Chaco (red outling) in the northern part
of the Cordoba Province, Argentina,

Q 50 Km

Fuente: Zak et al. (2004) Biol. Cons. 120: 589-598
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Ejemplo: agriculturizaciéon en el
Valle de Uco




Ejemplo: Destruccion de habitat en
el Mar Aral
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Ejemplo: Destruccidon arrecifes de
coral del SE de Asia
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Figure 1. Map of study region, sub-regions, and the 2667 surveyed

reefs (green dots).
doi:10.1371/journal.pone.0000711.g001
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Figure 2. Coral cover in the Indo-Pacific. (a) Cover (means = 1 5E) in ten

subregions of the Indo-Pacific. Data are from 2003 for seven subregions 2
and from 2002 for three subregions not adequately sampled after 2002
(Hawaiian Islands, Talwan & Japan, and Westem Pacific). Values above the 3
bars are the number of reefs surveyed in each subregion. (b-) Histograms .
illustrating percent coral cover in the Indo-Pacific and selected subregions O
during different periods. (d) is based on [45).
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Proceso de degradacion del habitat
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Figure 1 The process of habitat fragmentation. where “a large expanse of habitat 1s
transformed 1nto a number of smaller patches of smaller total area. 1solated from each
other by a matrix of habitats unlike the origimal™ (Wilcove et al. 1986). Black areas
represent habitat and white areas represent matrix.

Fuente: Fahrig (2003) Ann. Rev. Ecol., Evol. & Syst. 34: 487-515



Proceso de degradacion del habitat
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Land sparing

Figure 2

Habitat loss is a process whereby habitat is destroyed over tme. In contrast, habitat fragmentation per se
(hereafter referred to as habitar fragmentation) 1s a difference in spatial pattern. For a given amount of
habitat, a more fragmented pattern has more, smaller patches, with more total edge in the landscape. The
current dominant paradigm assumes that habitat fragmentaton generally has negative effects on biodiversity.
If this is true, then policies should favor land spanng over land sharing.

Fuente: Fahrig (2017) Ann. Rev. Ecol., Evol. & Syst. 48: 1-23
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Figure 2 Illustration of habitat loss resulting in some, but not all, of the other three
expected effects of habitat fragmentation on landscape pattern, Expected effects are
(@) an increase in the number of patches. (b) a decrease in mean patch size. and
(€) an inecrease in mean patch 1solation (nearest neighbor distance). Actual changes are
indicated by arrows.

Fuente: Fahrig (2003) Ann. Rev. Ecol., Evol. & Syst. 34: 487-515
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a)

Individual fragments Whole landscapes

size compositional gradients
shape diversity of land-uses
core area number of fragments
vegetation type agoregation

isolation structural connectivity

Figure 5.1 Comparison of the types of attributes of a) individual
fragments and b) whole landscapes.

Fuente: Bennett & Sounders, en Sohdi & Ehrlich (2010), Conservation biology for all
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Figure 5.2 Changes in the extent and pattern of native vegetation in the Kellerberrin area, Western Australia, from 1920 to 1984, illustrating the
process of habitat less and fragmentation. Reprinted from Saunders et al {1993),

Fuente: Bennett & Sounders, en Sohdi & Ehrlich (2010), Conservation biology for all



Experimentos de fragmentacion
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Experimentos de fragmentacion
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Efecto del area

2 8
.

.
o

o

Mumber of species
B
T -,

1] 10 0 30 40 1] 60

2
L]

g
s s

=
-'

Mumber of spedes
=

o 10 20 30 40 50 60
Tree cover ()
Figure 5.6 Speces-area relationships for forest birds: a) in forest
fragments of different sizes in eastemn Victoria, Australia {data from Loyn
1997); b} in 24 landscapes (each 100 km?) with differing extent of
remnant wooded vegetation, in central Victoria, Australia {data from

Radford et al 2005). The piecewise regression highlights a threshold
response of species nichness to total extent of wooded cover,

Fuente: Bennett & Sounders, en Sohdi & Ehrlich (2010), Conservation biology for all



Efecto del area
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Efecto borde
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Fig. 3 - Edge effects documented in Amazonian forest fragments, showing the great diversity of edge phenomena and the
varying distances they penetrate into forest interiors (after Laurance et al., 2002).

Fuente: Laurance (2008) Biol. Cons. 141: 1731-1744
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Fig.2. Changein abundance ofsix beetle species across forest edgesin New
Zealand. Example species with a preference for forest habitat (3, e, and ),
grassland matrixhabitat (b), and edge habitat (c and d) are presented. For a—
thereis an asymptote inbeetle abundance inside the forest, so itis posible to
caloulate the distance over which the habitat edge influences abundance,
which in the examples illustrated is — 28, —1, and —6 m, respectively (calou-
lated as the local maxima or minima of the second derivatives of the fitted
curves; 5 Appendix) (8). However, in d-f there is no statistical evidence for an
asymptote inside the forest, indicating that abundance isstill changing across
the forest edge gradient and that edge effects penetrate asfar as 1 km. Values
are mean = 5E and the open symbok represent the values for five sites in the
deep forest control that were all separated by =500 m. These values are
presented for comparison but were not used in model fitting. Negative edge
values are in the forest {shaded area), and positive valuesare in the surround-
ing grassland matrix. Fitted lines are the best-fitting model chosen from five
competing models (5 Appendix) (B). The species presented are as follows:
Enicmus sp. (Latridiidae) (), Sepedophilis sp. (Staphylinidae) (b), Scraptoge-
tus sp. (Aderidae) (c), Nestrius sp. (Curculionidae) (d), Micrambina sp. (Cryp-
tophagidae) (e), and Melanophthalma fulgurita (Latridiidae) (f).
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Fuente: Kuusaari et al. (2009) Trends Ecol Evol 24: 564-571
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Figure 3. Species-area relationships for mammals in
rainforest fragmenis in tropical Queensland,
contrasting patterns in 1986-1987 (species = 3.40
area’”®) and 2006-2007 (species = 1.67area”>’).

Figure §. Map of study area in north
Chieensland fn 2000-2007, Four control
sites in fntact forest ave A, ©, D, and G; 160
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Fuente: Laurance et al. (2008) Conservation Biology 22: 1154-1164
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Fig. 4. Delayed effects of fragmentation on ecosystem degradation.
[A) The extinction debt represents a delayed loss of species due to frag-
mentation. (B} The immigration lag represents differences in species
richness caused by smaller fragment area or Increased [solation during
fragrment succession. (€] The ecosystern function debt represents de-
layed changes in ecosystemn function due to reduced fragment size or
increased isolation, Percent loss is calculated as proportional change in
fragmented treatments [for example, (no. of species in fragment - no.
of species in control)/{ino. of species in control} = 10d). Fragments and
controls were either the same area bafore and after fragmentation, frag-
mients compared to unfragmented controls, or small compared to large
fragrments. Filled symbols indicate times when fragmentation effects
became significant, as determined by the original studies (see tabie
521, Mean slopes {dashed lines) were estimated using linear mixed {random
slopes) models. Mean slope estimates (mean and SE) were as follows: (A)
-0.22935 (0.07529); (8) —0.06519 (0.03495); (C) -0.38568 (0160710},

Haddad et al. (2015) Science Advances 1. e1500052
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Proportion of significant fragmentation effects that are negative and positive, across all ecological responses.
Numbers above the bars indicate the number of significant effects. Most significant fragmentation effects are

positive.

Fuente: Fahrig (2017) Ann. Rev. Ecol., Evol. & Syst. 48: 1-23
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Proportion of significant
positive effects

Figore 12

Explanations offered by the authors for their sisnificant positive effects of fragmentation, Numbers above
the hars indicate the number of significant effects. No explanation was suggested for 41% of significant
positive fragmentation effects. Several authors suggested that landscapes with more small patches (ie., more
fragmented landscapes) had higher funetional conneetivity and/or higher habitat diversity than landscapes
with fewer large patches. Some authors explained their positive fragmentation effects as resulting from
positive edge effects such as higher survival and/or higher reproductive success ar habatar edges. Other
authors suggested thar positive fragmentation effects are due o stabilization of predator—prey or
host—parasitoid mteractions or reduced intra- or mterspecific competition in more fragmented landscapes,
Some authors suggested that extinetion risk is lower in more fragmented landscapes owing to the spreading
of risk over multiple patches. Finally, a few authors suggested that habirar fragmentation increases landscape
complementation by increasing accessibility among muldple required habitar grpes, For 10 responses the
author affered an explanation for their significant positive fragmentation effect{s), bur [ was not able to
interpret this explanation as a mechanism that could produce a positive fragmentation effect. Most of the
explanations proposed by authors for their positive fragmentation effects have been present in the ecological
lirerature for more than 40 years.

Fuente: Fahrig (2017) Ann. Rev. Ecol., Evol. & Syst. 48: 1-23



¢, Es buena la fragmentacion?

So-called zombie ideas are ideas that should be dead but are not (Fox 2001 1). The results of this
review suggest that the idea that habirat fragmentation, independent ot habitat loss, has widespread
negative effects on ecological responses qualifies as a zombie idea. It arose from (@) confounding
habitat parchiness with habitat loss (see Section 1) and (#) inappropriate extrapolation of parch-
scale patterns to landscape-scale inferences. The fact that this zombie has persisted for more than
45 years is a testament to its intuitive appeal (Fahrig 2017).

most authors still assume that the eftects of habitat fragmentation independent of the effects of
habitat loss are generally negative, as evidenced by the following statements: “Habitar loss and
fragmentation are major threats to terrestrial biodiversity™ (Prugh et al, 2008, p. 20770}, “habitat
loss and fragmentation are the principal causes of the loss of biological diversity” (Mbora & McPeck
2009, p. 210), “habitat loss and fragmentation cause significant loss of species richness” (Barth
et al. 2015, p. 122), and “habitat loss and fragmentation inevitably cause biodiversity decline”
(Barelli et al. 2013, p. 23).

The results of this review indicate that such statements are in fact false. Although habitat loss is,
without doubt, one of the most significant causes of biodiversity decline, the significant responses
to habitat fragmentation independent of habitat amount are rare and mostly positve,

Fuente: Fahrig (2017) Ann. Rev. Ecol., Evol. & Syst. 48: 1-23
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Table 1

Major conclusions regarding “zombie ideas’ in Fahirie (2017), the evidence provided, and a non-exhaustive summary of counter evidence not considered in the review
(focusing on meta-analvses, systematic reviews, and prior rebuttals),

Fahrig's ‘zombie ideas’

Fahrig's evidence

Counter evidence not considered

Habitat fragmentation has widespread
negative effects

Small number of large patches conlain more
species than large number of small
paiches

Edge effects are generally negative

Habitat fragmentation reduces connectivity

Habital specialists show greater negative

Negative habitan fragmentation responses are
stronger at low levels of habitat amount

Megative fragmentaticn responses ane
stronger in the ropics

Tt of ‘significant’ responses to habitat fragmentation
from landscape studies were positive.

SLOSS" analvsis on species richness: all 60 *significant’
responses were pasitive (higher richness in many small
patches).

Mo data. Authors of papers suggest that positive edge
effects may drive positive responses to habitat
fragmentation,

Mo data. Authors of papers suggest that greater
functional connectivity may drive positive responses to
habitat fragmentation.

Mo data. Pooled ‘endangered /threatened /specialist”;
29 of 30 significant responses to habitat fragmentation
were positive.

Proporton of negative responses to habitat
fragmentation were similar when comparing < (1.2
(21%) habitat to = 0.2 (33%%),

Proportion positive responses similar for 'subtropical/
tropical’ versus other.

Hiaddad e al. (2015) provide a met-analysis on long-term, paich-
focused experiments, with edege and isolation efects controlling for
habitat area and habitat heterogeneity. Effects are consistently negative
(80% isolation; B2% edgel and increasingly so over rime

Ramzey (19895 and Mae MNally and Lake [1999%) argue that this type
analysis is flawed, yiclding biased results (in the direction shown by
Fahrig), and that it does not provide & means of assessing ‘significance’.
Ries el al, (2004}, Fletcher Jo. er al, (2007}, and Pleifer exal, (2017)
show variable edge effects. Pleifer et ol (2017 ) meta-analysis shows that
species with negative edge effects are 3.7 times more likely to be of
conservation concern {IUCH threatened), while positive responses
include pest/invasive species.

Meta-analysis on corridor effects shows positive effect of corridors (less
fragmented), with S0% increase in movement (n = 28 studies) along
caorridors when controlling for habitat area (Gilbert-Norfon e al., 20000,
Pledfer et ol (2017 ) meta-analvsis shows that negative edge effects are
tvpically observed for specialist species, positive for generalist species,

Theory emphasizes that specific thresholds are contingent on
assumptions regarding movement (Swift and Haonon, 2000) (Hanskd,
2015; With and King, 2001). Fahrigs results do not support this claim
when considered a larger threshold: = 0.5 (33.3% negative) versus
= 0.5 (8% negative).

Limdfell et wl [2H17) meta-analysis shows that tropical birds are more
likely to avoid edges than temperate hirds,

* SLOSS analyses based on species accumulation curves. Only the lack of crossing accumulation curves was taken as ‘significant’, although Mac Nally and Lake
(1999) show this conclusion provides no statistical inference on ‘significance’,

Fuente: Fletcher et al. (2018) Biological Conservation 226: 9-15
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Table 1
Major conclusions regarding “zombie ideas’ in Fahirie (2017), the evidence provided, and a non-exhaustive summary of counter evidence not considered in the review
(focusing on meta-analvses, systematic reviews, and prior rebuttals),

Fahrig's ‘zombie ideas’ Fahrig's evidence Counter evidence not considered
Habitat fragmentation has widespread Tt of ‘significant’ responses to habitat fragmentation Hiaddad e al. (2015) provide a met-analysis on long-term, paich-
negative effects from landscape studies were positive. focused experiments, with edege and isolation efects controlling for

habitat area and habitat heterogeneity. Effects are consistently negative
{(80% isolation; 2% edge) and increasingly so over rime
Small number of large patches contain maore SLOSS" analvsis on species richness: all 60 *significant’ Ramzey (19895 and Mae MNally and Lake [1999%) argue that this type

species than large number of small responses were pasitive (higher richness in many small analysis is flawed, yiclding biased results (in the direction shown by
patches patches). Fahrig), and that it does not provide & means of assessing ‘significance’.
Edge effects are generally negative Mo data. Authors of papers suggest that positive edge Hies et al. (20041, Fletcher Je. er ol, (2007), and Pleifer ecal, (2017
. i . w i w . " o ’ ~ et al. (2017 A-ans i = il
Fahrig's review provides insufficient evidence or context for the **' " 2017} meta-analysis shows that

t5 are 3.7 tmes more likely to be of

conclusion that habitat fragmentation effects are largely positive. Such eatened), while positive responses
a conclusion is only possible with an unreasonable set of assumptions
. : . ; s shows positive effoct of corridors (less
that narrows the evidence base. We caution that fueling polarized i, vement (n = 28 studies) slons
perspectives with invective can stymie research growth, and could have bitat area (Gilhert-Noron et al, 2010,
; ek ok : sis shows that negative edge effects are
unintended and unjustified ramifications for conservation and man- ** *'"* Mt negative edge SHeC Are
. ) EPEEIE'S, I'.IHH!tI".-E toar gcl.m‘.ra!ut HFECJT‘;‘-..
agement. The take-home message should be a call to all scientists
Negative habitar fragmentation rstWDI‘ki[lg at the forefront of issues on habitat loss and fragmentatjon to threshalds are contingent on
stronger at low levels of habita ) . . i ] . . nt {Swift and Hannon, 2010} (Hanski,
more clearly discriminate the mechanisms via which they impact bio- hrigs results do not support this claim
diversity and to consider mechanistic modeling in addition to the sta- wid: = 0.5 {33.3% negative) versus
Megative fragmentaticn responses EtlSthﬂJ and correlative approaches that have fueled the present dis- sis shows that tropical birds are more
stronger in the tropics agreements. Understanding why and when these habitat fragmentation erate birds.
: effects occur, how they interact with other human-induced changes, g ,
' SLOSS analyses based on spe ; 5 : = i ficant’, although Mac Nally and Lake
(1999) show this conelusion provaNd under what situations fragmentation effects will be positive or
negative will be essential for conserving biodiversity.

Habitat fragmentation reduces conr

Habital specialists show greater ney
Fes[HImRES

Fuente: Fletcher et al. (2018) Biological Conservation 226: 9-15



Conclusiones

» La pérdida y la degradacion del habitat es una de las
principales amenazas a la biodiversidad.

* Las actividades humanas han destruido y degradado
una gran proporcion de los ecosistemas mundiales.

« Una forma comun de degradacion es la
fragmentacion, que afecta a la biodiversidad por
efectos de pérdida de area, aumento del aislamiento,
efectos borde y las caracteristicas de la matriz.
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