1	2	3	4	5	Calificación

Introducción al Álgebra Lineal

Examen Final

04/12/2014

APELLIDO Y NOMBRE:

Indicaciones:

- Resuelva cada ejercicio en hojas separadas y coloque su nombre y apellido en cada una de ellas.
- Justifique todas sus respuestas.

Ejercicio 1. (30p.) Sea $B = \{v_1, v_2, v_3, v_4\}$ una base de \mathbb{R}^4 y sea $B' = \{w_1, w_2, w_3\}$ una base de \mathbb{R}^3 . Sea $f : \mathbb{R}^4 \to \mathbb{R}^3$ la transformación lineal tal que

$$M_{BB'}(f) = \left(\begin{array}{rrrr} 1 & 3 & 1 & 0 \\ 2 & 2 & 1 & 1 \\ -1 & 1 & 1 & -1 \end{array}\right) .$$

- (a) Calcular $f(v_1 2v_3)$.
- (b) Hallar una base de Nu(f) y una base de Im(f).
- (c) Calcular $f^{-1}(\{w_1\})$.

Ejercicio 2. (20p.) Sea $k \in \mathbb{R}$ y sea $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ k & 1 & 0 \end{pmatrix}$. Se sabe que -2 es un autovalor de la matriz A. Decidir si A es diagonalizable.

Ejercicio 3. (15p.) Sea \mathbb{V} un espacio vectorial y sean S y T subespacios de \mathbb{V} . Demostrar que $\mathbb{V} = S \oplus T$ si y sólo si para todo $v \in \mathbb{V}$ existen únicos $s \in S$ y $t \in T$ tales que v = s + t.

Ejercicio 4. (15p.) Sea \mathbb{V} un espacio vectorial de dimensión n y sea B una base de \mathbb{V} . Sea $f: \mathbb{V} \to \mathbb{R}^n$ definida por $f(v) = [v]_B$.

- (a) Demostrar que f es una transformación lineal.
- (b) Demostrar que f es un isomorfismo.

Ejercicio 5. (20p.) Evaluación oral.

Cantidad de hojas (a completar por el docente								
	1	2	3	4	5			