1	2	3	4	5	6	Calificación

Introducción al Álgebra Lineal

Examen Final Libre 24/07/2014

APELLIDO Y NOMBRE:

Indicaciones:

- Resuelva cada ejercicio en hojas separadas y coloque su nombre y apellido en cada una de ellas.
- Justifique todas sus respuestas.

Importante:

Para aprobar el examen se debe obtener al menos el $60\,\%$ del puntaje en cada una de las dos partes del examen.

Parte práctica

Ejercicio 1. (12p.) Sean $S = \text{Gen}(\{(1,1,0,1),(1,2,1,3)\})$ y $T = \text{Gen}(\{(1,-2,-3,-5),(3,1,0,1)\})$. Hallar una base y la dimensión de $S \cap T$.

Ejercicio 2. (18p.) Sean $S = \{x \in \mathbb{R}^4 / x_1 + x_2 - x_3 - 2x_4 = 0\}$ y $T = \{x \in \mathbb{R}^4 / x_1 - x_3 = 0\}$. Hallar un subespacio $W \subseteq \mathbb{R}^4$ que verifique simultáneamente que $W \subseteq T$, dim $(W \cap S) = 1$ y $W + S = \mathbb{R}^4$. Verificar que el subespacio W hallado cumpla las condiciones pedidas.

Ejercicio 3. (25p.) Sean $B = \{v_1, v_2, v_3\}$ y $B' = \{v_1 + v_2, v_3, v_2 - v_1\}$ bases de \mathbb{R}^3 y sea $f : \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal tal que $M_{BB'}(f) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \\ 1 & -1 & 0 \end{pmatrix}$.

- (a) Hallar los autovalores de f.
- (b) ξ Es f diagonalizable?

Parte teórica

Ejercicio 4.

- (a) (4p.) Definir el concepto de independencia lineal.
- (b) (8p.) Sea \mathbb{V} un espacio vectorial y sean $v_1, v_2, \ldots, v_n \in \mathbb{V}$ tales que $\{v_1, v_2, \ldots, v_n\}$ es linealmente independiente. Sea $w \in \mathbb{V}$. Demostrar que si $\{v_1, v_2, \ldots, v_n, w\}$ es linealmente dependiente entonces w es combinación lineal de v_1, v_2, \ldots, v_n .

Ejercicio 5. (18p.) Sea \mathbb{V} un espacio vectorial y sea $f: \mathbb{V} \to \mathbb{V}$ una transformación lineal. Demostrar que f es diagonalizable si y sólo si existe una base B de \mathbb{V} formada por autovectores de f.

Ejercicio 6. (15p.) Sea \mathbb{V} un espacio vectorial de dimensión n y sea $f: \mathbb{V} \to \mathbb{V}$ una transformación lineal. Demostrar que si f tiene n autovalores distintos entonces f es diagonalizable.

Cantidad de hojas (a completar por el docente)									
1	2	3	4	5	6				