Introducción al Álgebra Lineal

Año 2014

Lista de teoremas para el examen final

Álgebra vectorial

Teorema 1 (Designaldad de Cauchy-Schwartz). Sea $n \in \mathbb{N}$ y sean $v, w \in \mathbb{R}^n$. Entonces $|\langle v, w \rangle| \leq ||v|| ||w||$.

Proposición 2 (Desigualdad triangular).

Sea $n \in \mathbb{N}$ y sean $v, w \in \mathbb{R}^n$. Entonces $||v + w|| \le ||v|| + ||w||$.

Proposición 3. Sea $N \in \mathbb{R}^3 - \{0\}$ y sea $A \in \mathbb{R}^3$. Sea Π el plano perpendicular a la dirección de N que contiene al punto A. Sea $P \in \mathbb{R}^3$. Entonces la distancia del punto P al plano Π es

$$d(P,\Pi) = \frac{|\langle P - A, N \rangle|}{\|N\|}.$$

En particular, si $P = (x_0, y_0, z_0)$ y Π es el plano de ecuación ax + by + cz = d entonces se obtiene que

$$d(P,\Pi) = \frac{|ax_0 + by_0 + cz_0 - d|}{\sqrt{a^2 + b^2 + c^2}}.$$

Sistemas de ecuaciones lineales y matrices

Teorema 4. Sea $n \in \mathbb{N}$ y sea $A \in \mathbb{R}^{n \times n}$. Son equivalentes:

- (a) A es inversible.
- (b) Para todo $b \in \mathbb{R}^{n \times 1}$ el sistema $Ax^t = b$ tiene solución única.
- (c) El sistema $Ax^t = 0$ tiene solución única x = 0.
- (d) A es producto de matrices elementales.

Proposición 5. Sea $n \in \mathbb{N}$ y sea $A \in \mathbb{R}^{n \times n}$. Entonces A. adj(A) = det(A). I = adj(A). A.

Teorema 6. Sea $n \in \mathbb{N}$ y sea $A \in \mathbb{R}^{n \times n}$. Entonces A es inversible si y sólo si $det(A) \neq 0$.

Espacios vectoriales

Proposición 7. Sea \mathbb{V} un espacio vectorial. Sean $v_1, v_2, \ldots, v_n \in \mathbb{V}$ tales que $\{v_1, v_2, \ldots, v_n\}$ es linealmente independiente. Sean $w_1, w_2, \ldots, w_m \in \mathbb{V}$ tales que $\{w_1, w_2, \ldots, w_m\}$ genera \mathbb{V} . Entonces $n \leq m$.

Teorema 8. Sea \mathbb{V} un espacio vectorial finitamente generado. Entonces \mathbb{V} admite una base. Más aún, si $A = \{v_1, v_2, \ldots, v_n\}$ es un conjunto linealmente independiente de vectores de \mathbb{V} y $G = \{w_1, w_2, \ldots, w_m\}$ es un conjunto generador de \mathbb{V} entonces existe un subconjunto $H \subseteq G$ tal que $A \cup H$ es una base de \mathbb{V} .

Proposición 9. Sea \mathbb{V} un espacio vectorial finitamente generado. Sean B y B' bases de \mathbb{V} . Entonces #B = #B'.

Proposición 10. Sea \mathbb{V} un espacio vectorial de dimensión finita y sea $n = \dim(\mathbb{V})$.

- (a) Si A es un conjunto linealmente independiente de vectores de $\mathbb V$ con n elementos entonces A es base de $\mathbb V$.
- (b) Si G es un conjunto generador de \mathbb{V} con n elementos entonces G es base de \mathbb{V} .

Proposición 11. Sea $\mathbb V$ un espacio vectorial de dimensión finita y sean S y T subespacios de $\mathbb V$. Entonces

$$\dim(S+T) = \dim(S) + \dim(T) - \dim(S \cap T).$$

Transformaciones lineales

Teorema 12. Sea \mathbb{V} un espacio vectorial de dimensión finita y sea \mathbb{W} otro espacio vectorial. Sea $f: \mathbb{V} \to \mathbb{W}$ una transformación lineal. Entonces

$$\dim(\mathbb{V}) = \dim(\mathrm{Nu}f) + \dim(\mathrm{Im}f).$$

Proposición 13. Sean \mathbb{V} y \mathbb{W} espacios vectoriales y sea $f: \mathbb{V} \to \mathbb{W}$ una transformación lineal. Sea B una base de \mathbb{V} y sea B' una base de \mathbb{W} . Entonces, para todo $v \in \mathbb{V}$ vale que

$$M_{BB'}(f).([v]_B)^t = ([f(v)]_{B'})^t.$$

Autovectores y autovalores

Proposición 14. Sea \mathbb{V} un espacio vectorial y sea $f: \mathbb{V} \to \mathbb{V}$ una transformación lineal. Sea B una base de \mathbb{V} . Entonces v es autovector de f de autovalor λ si y sólo si $[v]_B$ es autovector de $M_{BB}(f)$ de autovalor λ .

Proposición 15. Sea $n \in \mathbb{N}$, sea $A \in \mathbb{R}^{n \times n}$ y sea $\lambda \in \mathbb{R}$. Entonces λ es autovalor de A si y sólo si $det(A - \lambda I) = 0$.

Proposición 16. Sea \mathbb{V} un espacio vectorial y sea $f: \mathbb{V} \to \mathbb{V}$ una transformación lineal. Sea $r \in \mathbb{N}$ y sean $\lambda_1, \lambda_2, \ldots, \lambda_r$ autovalores distintos de f. Sean v_1, v_2, \ldots, v_r autovectores de f asociados a los autovalores $\lambda_1, \lambda_2, \ldots, \lambda_r$ respectivamente. Entonces el conjunto $\{v_1, v_2, \ldots, v_r\}$ es linealmente independiente.

Proposición 17. Sea $n \in \mathbb{N}$ y sea $A \in \mathbb{R}^{n \times n}$. Sea $f_A : \mathbb{R}^n \to \mathbb{R}^n$ la transformación lineal definida por $f_A(x) = (Ax^t)^t$. Entonces A es diagonalizable si y sólo si f_A es diagonalizable.

Proposición 18. Sea \mathbb{V} un espacio vectorial y sea $f : \mathbb{V} \to \mathbb{V}$ una transformación lineal. Entonces f es diagonalizable si y sólo si existe una base B de \mathbb{V} formada por autovectores de f.

Proposición 19. Sea \mathbb{V} un espacio vectorial de dimensión n y sea $f: \mathbb{V} \to \mathbb{V}$ una transformación lineal. Si f tiene n autovalores distintos entonces f es diagonalizable.

Recordar que en la parte teórica del examen también se pedirá explicar las demostraciones que les toque hacer y se evaluará que la demostración esté bien hecha, que entiendan lo que están haciendo, que entiendan el enunciado del teorema y que entiendan las implicancias y aplicaciones del teorema. Además, también se pedirá la resolución de ejercicios teóricos y se podrá pedir dar ciertas definiciones de las que hemos visto en clase.