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Central dogma rates and the trade-off between
precision and economy in gene expression
Jean Hausser 1, Avi Mayo1, Leeat Keren1 & Uri Alon1

Steady-state protein abundance is set by four rates: transcription, translation, mRNA decay

and protein decay. A given protein abundance can be obtained from infinitely many com-

binations of these rates. This raises the question of whether the natural rates for each gene

result from historical accidents, or are there rules that give certain combinations a selective

advantage? We address this question using high-throughput measurements in rapidly

growing cells from diverse organisms to find that about half of the rate combinations do not

exist: genes that combine high transcription with low translation are strongly depleted. This

depletion is due to a trade-off between precision and economy: high transcription decreases

stochastic fluctuations but increases transcription costs. Our theory quantitatively explains

which rate combinations are missing, and predicts the curvature of the fitness function for

each gene. It may guide the design of gene circuits with desired expression levels and noise.
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To function well in a given environment, cells need to
express genes at the right protein copy number1–3. Steady-
state protein abundance is set by two reactions of synthesis

—transcription and translation—balanced by two processes of
decay—dilution and degradation of mRNAs and proteins4.
Together, these make up the four basic rates of the central
dogma5.

The rates of these four central dogma reactions are controlled
by diverse regulators. Transcription rate is set by transcription
factors and chromatin remodelers6. Translation is modulated by
RNA-binding proteins and non-coding RNAs7,8, and so on. The
effects of these molecular controls can be summarized by the
central dogma rates, such that each protein is a point in a four
dimensional space whose axes are the four rates. In this study, we
name this the Crick space, in honor of Francis Crick who pro-
posed the central dogma5.

One important property of Crick space is that the same steady-
state protein abundance can be achieved by many combinations of
rates. For example, consider a protein made at 1000 copies per
hour (Fig. 1). This can be achieved by transcribing 100 mRNAs
and translating 10 proteins from each mRNA every hour. Alter-
natively, the 1000 proteins could be made from one mRNA
translated into 1000 proteins per hour (in this example, we fixed
mRNA and protein decay). There is an infinite number of ways to
combine transcription and translation rates, βm [mRNA h−1] and
βp [protein mRNA−1 h−1)], in order to supply a given steady-state
number of proteins p, namely βmβp/αmαp= p where αm [h−1] and
αp [h−1] are the rates of mRNA and protein decay by dilution and
degradation (Methods).

Here we ask whether such combinations occur randomly, as
expected if they are equally beneficial and historical accident or
genetic drift is at play, or whether there are rules based on specific
translation/transcription ratios that have selective advantage. If
such rules exist, we might expect to see patterns in the way that
genes occupy Crick space.

While there has not been systematic evidence for rules so far,
previous work described how different combinations of central
dogma rates can differ in their biological impact. One line of work
shows that intrinsic noise9–12, the stochastic variation in protein
number due to small-number effects, is largest when there are few
mRNAs translated into many proteins13–16. This large noise
occurs because the relative fluctuations in the number of a few
mRNAs are large, and are amplified by strong translation. This
idea was first proposed by McAdams & Arkin13 based on theo-
retical arguments. The prediction that a given protein abundance
can be reached with the least noise when transcription is high and
translation is low was validated by Ozbudak et al.14 using syn-
thetic constructs with defined transcription and translation rates.
Bar-Even et al.16 measured the noise and abundance of 43 S.
cerevisiae proteins and found that noise scaled with protein
abundance in a way consistent with the predictions of McAdams
& Arkin13. Also in S. cerevisiae, Newman et al.17 observed a
correlation between noise and mRNA abundance for 2500+
genes.

Another difference between combinations of rates that give the
same steady-state protein abundance is mRNA cost—the reduc-
tion in fitness due to production of mRNA18–22. Theoretical
studies proposed that the cost of synthesizing mRNAs confers a
selectable disadvantage13,18,19. Experiments in S. cerevisiae21

indicate that expressing a non-beneficial mRNA penalizes the
growth rate in proportion to the transcription rate (Methods). In
E. coli, expressing a protein at a given abundance from a larger
number of mRNAs decreases fitness22.

Noise and cost are thought to be significant components in
determining the fitness and selection of biological designs13,23–27.
In particular McAdams & Arkin13, and others14 proposed that

there should be a trade-off between minimizing gene expression
costs and minimizing noise in protein abundance. Testing this
hypothesis has been difficult, partly because the central dogma
rates could not be measured genome-wide until recently28.
Another hurdle that prevented testing the hypothesis of a
precision-economy trade-off in gene expression is that it is
unclear how the interplay of precision and economy should affect
the distribution of genes in the Crick space.

Here we address the question of rules for protein expression by
analyzing comprehensive data on central dogma rates from sev-
eral model organisms3,17,26,29–31 and by theory on evolutionary
trade-offs. We find that about half of the Crick space is empty:
genes do not seem to combine high transcription with low
translation. This depleted region is accessible by synthetic con-
structs, and hence its emptiness is not based on mechanistic
constraints. We explain the empty Crick space by a trade-off
between cost and noise of gene expression. This theory accurately
predicts the boundary of the empty region which varies by 2
orders of magnitude between the model organisms we considered.
This approach might be of use to design synthetic gene expression
circuits, and suggests rules for central dogma rates that seem to
apply from bacteria to humans.

Results
Genes combining high transcription and low translation are
depleted. We estimated transcription βm and translation βp rates,
as well as mRNA and protein decay rates, for thousands of genes
from previous mRNAseq and ribosome profiling (RP) experi-
ments in S. cerevisiae29, M. musculus, H. sapiens30, and E. coli3

(Methods). All data were collected under conditions of rapid
growth.

We find, in accordance with previous studies3,26,32,33, that
transcription and translation rates in rapidly growing cells vary
much more from gene to gene than mRNA and protein decay
rates. Transcription and translation rates vary over a 1000-fold
range compared to a 10-fold range for decay rates of mRNA and
protein (Supplementary Fig. 1a–d). Taking into account gene-
specific mRNA and protein decay rates has only a small impact on
the position of genes in 2D Crick space (Supplementary Fig. 1e–g,
Methods). We therefore simplify our discussion by considering a
2D Crick space, formed by transcription and translation rates.

Reducing the 4-dimensional Crick space to two dimensions
neglects aspects of cell biology such as the dynamics of gene
regulation in response to environmental perturbations34,35, but it
allows us to focus on the most variable rates in setting steady-
state protein abundance in growing cells, transcription and
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Fig. 1 For each gene, an infinite number of combinations of transcription
and translation rates can achieve a given protein abundance. For example,
to obtain 1000 proteins per hour, one possibility is to translate 1000
proteins per hour from a single mRNA. Another option is to translate
10 proteins per hour from 100 mRNAs. We assumed fixed mRNA and
protein decay to simplify the visualization. See also Supplementary Fig. 1
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translation, and ask what rules may underlie them. Furthermore,
reducing to two dimensions yields a more complete picture
of Crick space (mRNA and protein decay rates have typically
been measured for 20–50% of genes) and avoids the concern
that the decay rates have been measured in separate studies, unlike
the synthesis rates for S. cerevisiae, E. coli, and H. sapiens
(Methods).

Plotting the transcription and translation rates of genes in four
model organisms, we observe common boundaries in the Crick
space (Fig. 2). First, the maximal translation is 103.6–104 proteins
per mRNA per hour, a bound that can be explained from the
ribosome translocation speed (Methods). Second, we observed
lower bounds on the transcription rate and on the product of
transcription and translation. These boundaries stem from
technical limits of the assays (Supplementary Fig. 2a).

Unexpectedly, and most importantly for the present study,
there was a lack of genes combining high transcription with low

translation (blue regions in Fig. 2). We call this region the
depleted region of the Crick space. This depleted region makes up
about half of the Crick space and is bounded by a line of constant
ratio between transcription βm and translation βp, namely βp/βm
= k, with k= 1.1 ± 0.1, 14 ± 3, 44 ± 3, and 66 ± 4 in S. cerevisiae,
E. coli, M. musculus, and H. sapiens, respectively (± represents
standard error, Table 1). In logarithmic axes, the boundary of the
depleted region has slope 1 and intercept log(k). Hence, k
determines the boundary of the depleted region.

In E. coli, the boundary of the depleted region has additional
structure. Departing from the main distribution of genes are a set
of 59 genes with very high transcription and translation rates (βm
> 80 h−1 and βp > 1000 mRNA−1h −1, indicated by an arrow in
Fig. 2d). About 90% of these genes are ribosomal proteins. The
rest are high abundance proteins such as the glycolysis enzyme
gapA (the E. coli equivalent of Gapdh), the ATP synthase c
subunit, and outer-membrane proteins (OMPs). Most genes in
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Fig. 2 Genes combining high transcription and low translation are depleted from the Crick space across organisms. a–d There is a depleted region in the
Crick space of four model organisms. Transcription and translation rates were estimated from ribosome profiling and mRNA sequencing data. The top
percentile of translation rates βmax

p

� �
is represented as a horizontal dashed line. The observed boundary of the depleted region (diagonal dashed line) has

slope 1 and is such that 99% of the genes have a larger translation/transcription ratio. Excluding 1% of genes in this way makes the boundary line less
sensitive to measurement errors and to outlier genes, some of which are highlighted. The predicted boundary of the depleted region (red line) is according
to the theory introduced later in this article. Technical constraints explain the absence of genes at low transcription and translation rates (region marked
“not sampled”). S. cerevisiae data (a) from Weinberg et al.29. M. musculus (b) and H. sapiens (c) data from Eichhorn et al.30. E. coli data (d) from Li et al.3.
e Transcription and translation rates of 3744 E. coli genes (gray dots) and of 7624 synthetic constructs (red dots) of Kosuri et al.38. The apparent negative
correlation between transcription and translation rates in this dataset is due to limits in the linear range of flow cytometry measurements which leads to
censoring of low and high abundance proteins38. f Figure legend summarizing the meaning of the different lines on a–e. See also Supplementary Fig. 2

Table 1 The intercept k of the boundary of the depleted region varies over two orders of magnitude across the studied organisms

Organism Measured k Predicted k βmax
p ´ 103

� �
αp

P
βm ´ 104

� �
cv0

S. cerevisiae 1.1 ± 0.1 1.1 ± 0.3 7.1 ± 0.7 1.3 ± 0.2 30 ± 15 0.10 ± 0.01
E. coli 14 ± 3 13 ± 4 11 ± 1 1.9 ± 0.3 2.0 ± 1 0.25 ± 0.01
M. musculus (3T3) 44 ± 3 29 ± 8 3.0 ± 0.3 0.04 ± 0.01 2.5 ± 1.2 0.3 ± 0.03
H. sapiens (HeLa) 66 ± 4 60 ± 17 5.1 ± 0.5 0.05 ± 0.01 1.4 ± 0.7 0.3 ± 0.03

k can be predicted from the maximal translation rate βmax
p [protein mRNA−1h −1], the protein decay rate αp [h−1], the total transcriptional output

P
βm [mRNA h−1], and the noise floor cv0 using Eq. (5).

The measured k is defined by having 99% of genes with βp/βm > k. Uncertainties represent standard errors determined from 3744 to 9770 genes depending on the organism
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this set are essential to cellular viability, as indicated by knockout
experiments (Supplementary Fig. 2b). If one removes essential
genes from the data, the boundary of the depleted region shifts
up and tightly fits the rest of the genes with a higher intercept, k
= 44 ± 9. This higher intercept for non-essential genes is
predicted by the theory introduced below (Supplementary Fig. 2b,
Methods).

A depleted region is also found when we estimate transcription
and translation from two proteomic and mRNAseq datasets in
H. sapiens and M. musculus (Supplementary Fig. 2c, d). Finally,
we observe the depleted region when plotting transcription burst
rate against translational burst size36,37 inferred from single
cell protein abundance measurements17 (Supplementary Fig. 2e).

We assessed the statistical significance of the depleted region
by shuffling transcription and translation rates while conserving
the distributions of protein abundance and translation rates
(Supplementary Fig. 2f–h). We find that none of the 104 shuffled
datasets show a comparable depleted region in Crick space (equal
or smaller number of genes with βp/βm < k, p < 10−4).

Genes can mechanistically achieve high transcription and low
translation. A possible explanation for the depleted region is that
a (possibly yet unknown) biochemical constraint prevents high
transcription combined with low translation. To test for this
possibility, we re-analyzed measurements by Kosuri et al.38 on
synthetic genes that provided a wide range of transcription and
translation rates. In that study, GFP was expressed in E. coli
under the control of 114 promoters and 111 Ribosomal Binding
Sites (RBSs) of varying strengths. Relative abundance of the GFP
mRNA and protein was then quantified by mRNAseq and flow
cytometry.

The transcription and translation rates of the synthetic
constructs largely overlap with those of E. coli genes (Fig. 2e,
Supplementary Fig. 2i). However, in contrast to E. coli genes, a
large fraction of the synthetic constructs achieve a combination of
high transcription and low translation rates. 25% of the synthetic
genes fall in the depleted region seen for endogenous E. coli genes.
In S. cerevisiae as well, 32% of synthetic promoters from the
library of Sharon et al.39 fall in the depleted region (Supplemen-
tary Fig. 2j).

This observation supports the conclusion that the biochemistry
of gene expression can achieve high transcription and low

translation in principle. In support of this argument, there are
indeed examples of such genes in the depleted region for all
four organisms. These include the ribosome maturation factor
rimM in E. coli, the amino-acid response regulator GCN4
in S. cerevisiae, and the iron homeostasis protein Fth1 in
M. musculus and H. sapiens (Fig. 2a–d). Thus, the results in
this paper concern ~99% of the genes, with the remaining ~1%
requiring additional analysis (see discussion for suggested effects
for these genes).

At constant protein abundance, increasing transcription
increases both precision and cost of gene expression. Because
biochemical constraints do not seem to explain the lack of genes
combining high transcription with low translation, we asked
whether evolutionary trade-offs might explain it.

One could hypothesize that cells avoid combining high
transcription with low translation in order to minimize the cost
of mRNA synthesis. In S. cerevisiae growing in rich medium, the
fitness cost of mRNA is cm ~ 10−9 per transcribed nucleotide
(Methods)21. Synthesizing a non-beneficial mRNA of length lm
leads to a growth rate penalty Δfm that is linear with the
transcription rate21, Δfm= cmlmβm. For a typical mRNA of length
lm= 1300 nucleotides transcribed at a rate βm= 30 mRNA h−1,
the fitness cost of transcription is thus cmβmlm≃ 4 × 10−5 per
hour (Fig. 3a, Methods), which is selectable18,21. The cost of
mRNA is also selectable in E. coli20,22.

In addition to their cost, high transcription rates also have
benefits in reducing the noise13–16. Increasing the transcription
rate while keeping protein abundance fixed should therefore
decrease stochastic fluctuations in protein abundance.

To test if this prediction holds genome-wide across the
diversity of chromosomal context and promoters, we use
measurements of cell-to-cell variations in protein abundance in
S. cerevisiae17 and E. coli40. Cell-to-cell variations in protein
abundance can be quantified by the coefficient of variation (CV).
We determine contours of the CV as a function of transcription
and translation rate using Gaussian smoothing (Methods), and
compare these to contours of protein abundance. Both in S.
cerevisiae (Fig. 3b) and E. coli (Supplementary Fig. 3a), the CV
decreases with increasing transcription and decreasing translation
on each equi-protein line. The CV mainly scales with transcrip-
tion, as predicted by theory15 (Methods).
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Fig. 3 Increasing transcription at constant protein abundance increases transcription cost and decreases stochastic fluctuations in protein abundance.
S. cerevisiae rates fromWeinberg et al.29. Diagonal dotted lines are lines of constant protein abundance from 10 to 105 proteins per cell. a The loss of fitness
cmβmlm due to transcription (black lines) is linear in the transcription rates βm and the mRNA length lm. The linear factor cm (introduced in the next section)
rescales transcription fluxes [nt h−1] into fitness loss [h−1]. In S. cerevisiae, lm= 1300 nt, cm= 10−9 nt−1. b Coefficients of variation (CV, black lines) scale
with transcription rates. We applied 2D Gaussian smoothing on CVs (Methods). S. cerevisiae data: CVs from Newman et al.17, ribosome profiling and
mRNAseq data from Weinberg et al.29. c Precision in gene expression increases with transcription whereas protein abundance depends both on
transcription and translation. Thus, at a given protein abundance, increasing transcription increases the precision of gene expression at the expense of
higher transcription costs. See also Supplementary Fig. 3
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Hence, transcription and translation rates impact both gene
expression precision and mRNA economy. At a given protein
abundance, high translation/transcription ratios lead to
economy but also higher gene expression noise, whereas low
translation/transcription ratios yield high precision at the
expense of higher mRNA cost (Fig. 3c). The lack of genes
combining high transcription and low translation could be
explained by this trade-off: for genes located in the depleted
region, the benefits of increased precision may be smaller than
transcriptional costs.

The precision-economy trade-off and the noise floor explain
the depleted region of Crick space. To quantitatively test whe-
ther a trade-off between precision and economy can explain the
depleted region, we developed a minimal mathematical model of
the fitness cost and benefit of transcription and translation
(Fig. 4). The model has two main predictions: first that the
optimal ratio between translation and transcription rates βp/βm is
set by the ratio of transcription cost per mRNA molecule C and
the gene’s sensitivity to noise Q (defined below). The second
prediction is an analytical formula for the boundary of the
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depleted region—the lower bound k on the βp/βm ratio—based on
fundamental parameters.

To determine the optimal βp/βm ratio under the precision-
economy trade-off, we first model how the βp/βm ratio affects
mRNA economy and precision. We then model how mRNA
economy and precision affect fitness. Finally, we determine an
analytical expression for the optimal βp/βm ratio.

To compute how the βp/βm ratio affects economy, we model
the fitness cost of transcription21 by the linear function Δfm=
cmlmβm where lm is the (pre-)mRNA length and cm is the fitness
penalty per transcribed nucleotide. cm can be estimated from the
growth rate μ and the total transcriptional output

P
βm if we

assume that non-beneficial mRNA are transcribed at the expense
of mRNAs which code for beneficial proteins. If a total of

P
βmlm

nucleotides are transcribed in a cell, the average fitness
contribution of each nucleotide is μ=

P
βmlm. This is also the

fitness lost per nucleotide of transcribing a non-beneficial mRNA
at the expense of a beneficial mRNA. Thus, the fitness cost per
transcribed nucleotide is

cm ¼ μP
βmlm

: ð1Þ

This provides cm ~ 10−9 per nucleotide in S. cerevisiae which
agrees well with experimental measurements mentioned above
(Methods).

Although the cost of transcription is typically smaller than the
cost of translation18,20,21, the cost of translation needs not be
modeled here. To see why, note that the cost of translation of a
gene depends on how many proteins are made, regardless of
whether the proteins are synthesized from few mRNAs or many
mRNAs. Thus, provided that p protein copies are needed, the
trade-off is determined by transcription, i.e., whether many or few
mRNAs are made to supply the p copies. The relevant cost is
hence the cost of transcription.

To see how βp/βm and precision affect fitness, we consider a
protein of abundance p. The protein contributes a quantity f(p) to
the organism’s fitness (Fig. 4a). Because protein abundance
fluctuates around the average expression ph i ¼ p�, the cell does
not experience the maximum fitness fmax but rather a lower
average fitness f ðpÞh i. The fitness lost due to stochastic
fluctuations in protein abundance Δfnoise is called the noise
load24,25 (Fig. 4a). By expanding the fitness function f to second
order and averaging over fluctuations in protein abundance, we
can compute the noise load:

Δfnoise ¼ fmax � f ðpÞh i
¼ fmax � fmax þ f ′ p�ð Þ p� p�ð Þh

þ 1
2 f ′′ p

�ð Þ p� p�ð Þ2�
¼ 1

2 f ′′ p�ð Þj jσ2:

ð2Þ

Noise load increases with the curvature of the fitness functions
f ′′ p�ð Þj j and with noise σ.
To find how βm and βp affect fitness through the precision of

gene expression, we note that βm and βp affect the noise level σ2 in
a well-characterized way. Theory and experiments15–17,40 indicate
that the variance of protein abundance is given by

σ2 ’ p2
1
p
þ αp
βm

þ c2v0

� �
ð3Þ

where αp is the protein decay rate and cv0 is the noise floor
(Methods). The noise floor is the minimal amount of cell-to-cell
variation in protein abundance in clonal populations17,40–42.

We can now determine the optimal transcription and
translation rates βm and βp that minimize the combination of

the transcription cost Δfm and of the noise load Δfnoise (Methods),

d cmβmlm þ f ′′ p�ð Þj jσ2=2� �
dβm

¼ 0 ) βm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αpαm
C

Qp�
r

) βp
βm

¼ C
Q

ð4Þ

where C= cmlmαm= cmlmβm/m quantifies the cost of transcription
per mRNA molecule m for this gene, and Q ¼ 1

2 f ′′ p�ð Þj jp� is the
gene’s sensitivity to noise. Genes with narrower fitness functions
(larger f ′′ p�ð Þj j) are more sensitive to noise because the noise kicks
protein abundance farther from optimum. The sensitivity of a
gene to noise also depends on protein abundance p* because the
noise generally scales with protein abundance σ2 ~ p*.

The model therefore predicts a relationship between βp/βm
ratios and the shape of fitness functions (Fig. 4b). Broad fitness
functions should have large βp/βm because genes with broad
fitness functions are not sensitive to noise. For those, high
precision provides little benefit, and it is best to maximize
economy by lowering transcription. On the other hand, genes
with narrow fitness functions are sensitive to noise. For those,
requirements of high precision to keep the noise load low
dominate the cost of transcription. Genes with narrow fitness
functions should therefore have small βp/βm ratios.

We compared the model prediction for the curvature of the
fitness function near its peak to recent measurement of fitness
functions of 21 genes in S. cerevisiae43. We find that the
curvatures predicted from βp/βm are within an order of
magnitude of the measured curvatures without any fitting
parameters (Supplementary Fig. 4a). Predictions and measure-
ments correlate positively (r= 0.39). A shuffling test suggests that
the agreement between the predictions and measurements is
unlikely due to chance (p= 0.04, Methods). However, variability
in the experimental measurements precludes a conclusive
comparison.

To find a lower bound k on βp/βm and explain the boundary of
the depleted region, we note that there is a limit to how small the
noise in gene expression can be. This limit, called the noise floor
cv0, is revealed by measurements of cell-to-cell variation of
protein abundance in clonal populations17,40–42 (Fig. 4c, Supple-
mentary Fig. 4b, c). The cause for the noise floor is a current
research topic12 and it has been proposed that it is due to
extrinsic noise40 or larger transcriptional burst size of high
abundance proteins42. The noise floor puts an upper bound Qmax

on how noise-sensitive genes can be: if a gene had a fitness
function narrower than this limit (Q >Qmax), the noise load
would dominate the benefit of expressing the gene (Fig. 4d),
leading to negative fitness. Because genes with Q >Qmax cannot
be selected for, all expressed genes must satisfy Q <Qmax. The
boundary of the depleted region βp/βm= k hence corresponds to
genes with highest sensitivity to noise Qmax (Fig. 4e). The
depleted region βp/βm < k corresponds to transcription and
translation rates that are optimal for genes with fitness functions
too narrow given the noise floor.

To find k, we substitute Q=Qmax in Eq. (4) for the optimal βp/βm
ratio and rewrite k in terms of the noise floor and other cell biology
constants (Methods):

k ¼ C
Qmax

¼ βmax
p cv0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αp
P

βm

q ð5Þ

where
P

βm is the combined transcriptional output of all genes.
This expression provides an intuition for the cellular

parameters which set the boundary of the depleted region of
the Crick space. For example, a larger noise floor cv0 raises the
boundary because there is less benefit in having high
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transcription. An increased transcriptional output
P

βm lowers
the boundary because individual mRNAs are less costly, allowing
increased precision in gene expression.

This formula for k accurately predicts the boundary of the
depleted region of Crick space (Fig. 4f; red lines on Fig. 2) despite
the fact that k varies by nearly two orders of magnitude between
organisms (Table 1). Thus, the depleted region can be explained
in terms of fundamental parameters such as the noise floor,
maximal translation rate, total transcription output, and mean
protein decay rate. Individual cellular constants alone cannot
accurately predict k (Supplementary Fig. 4d). Neither can k be
predicted by noise alone without considering economy, such as
hypothesizing that the depleted region is made of all βm and βp
for which increasing transcription provides little extra precision
relative to the the noise floor (Methods).

Discussion
We find that the distribution of genes in Crick space is not
random: genes combining high transcription and low translation
are depleted. Such combinations of high transcription and low
translation can be achieved with synthetic gene constructs38.
Therefore, mechanistic constraints cannot explain this depletion.
We explain the depletion by a trade-off between precision and
economy: increasing transcription at constant protein abundance
diminishes stochastic fluctuations, but at a fitness penalty due to
the cost of transcription. High transcription rates are therefore
optimal for genes that are sensitive to noise whereas low tran-
scription rates are well suited for genes that can tolerate high
noise (Fig. 5a). A quantitative model of this trade-off predicts the
curvature of the fitness function for each gene and quantitatively
explains the boundary of the depleted region.

Combinations of high transcription and low translation are
achievable by the gene expression machinery, as evidenced by the
thousands of synthetic reporter constructs in the depleted region,
and the ~1% natural genes in the depleted region. The depleted
region is also easily reachable by mutations from naturally
occurring genes—for example, it typically takes a single mutation
to turn a strong RBS into a weak RBS44, and single mutations in
promoters can strongly affect transcription45. This strengthens
the hypothesis that the depleted region is due to selection. We
evaluate other hypotheses to explain the depleted region in
the Supplementary Discussion.

Ninety nine percent of the genes lie above the predicted
boundary of the depleted region. The remaining 1% fall in the

depleted region. For some of these genes, evidence from focused
studies indicates low translation rates and/or translation control,
such as the E. coli outliers rimM and trmD46, HAC1 in S. cere-
visiae47, and Fth1 in M. musculus and H. sapiens48. One expla-
nation for such outlier genes is that they face constraints beyond
the precision-economy trade-off. For example, the amino-acid
response regulator GCN4 in S. cerevisiae is strongly transcribed
and poorly translated in rich medium. But under amino-acid
imbalance conditions, a general decrease in protein translation
triggers derepression of GCN4 translation through a translation
reinitiation mechanism involving short upstream open reading
frames49. This regulatory mechanism couples GCN4 synthesis to
translation stress. It also bypasses transcription, which could
allow for rapid upregulation. Such considerations of regulatory
couplings or speed might overshadow precision-economy-based
limits for certain genes, especially genes responsible for survival
upon changes in the environment50. We consider other aspects of
gene regulation beyond precision and economy in the Supple-
mentary Discussion.

The distribution of genes in Crick space is bounded above
by the maximal translation rate (103.6–104 proteins h−1), and
below by the boundary of the depleted region. The position
of each gene in this space is determined, in the present picture,
by the curvature of its fitness function. Genes with a narrow
fitness function are most sensitive to noise, and are predicted to
lie near the boundary of the depleted region. Genes with a
broader fitness function are predicted to lie farther above
this boundary. This prediction suggests an experimental test
by measuring the curvature of the fitness function and comparing
to the prediction. Accurate measurements of fitness functions
can be performed by titrating protein concentration experimen-
tally and measuring fitness. A recent experiment measured such
fitness functions for 85 genes in S. cerevisiae43. While we found
a statistical agreement between the predicted and measured
curvatures of fitness functions, the measurement errors were
too large to permit a meaningful comparison to the present
predictions (Supplementary Fig. 4a). Further experiments to
measure fitness functions can test whether transcription and
translation rates predict fitness curvature near the peak. Alter-
natively, transcription and translation could be manipulated to
quantify the effect of precision and economy on fitness. Such
experiments are challenging because state-of-the art assays can
detect fitness changes of ~1% which is bigger than the fitness
changes visible to natural selection (10−8 to 10−4 h−1 depending
on the species).
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Fig. 5 The precision-economy trade-off suggests rules for choosing transcription and translation rates and for selecting regulatory strategies. a Due to the
precision-economy trade-off, low βp/βm is preferred for genes that are sensitive to noise. In log-log scale, low βp/βm corresponds to a diagonal line. On the
other hand, high βp/βm is preferred for proteins that tolerate noise. Because translation rates have an upper limit βmax

p , genes with highest βp/βm are found
on a horizontal line. b Regulatory strategies that lead to the same protein abundance differ in how they impact precision. Upregulating transcription
simultaneously increases protein abundance and precision. On the other hand, upregulating translation increases protein abundance while decreasing
precision. Transcription control is thus advantageous assuming that precision is desirable. c When protein abundance changes by a large amount, pure
transcription regulation can put the gene in the sub-optimal, depleted region. This can be avoided by co-regulating transcription and translation. See also
Supplementary Fig. 5
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Beyond optimizing transcription and translation under a
precision-economy trade-off, an additional reason why genes may
lie farther above the boundary of the depleted region is the
possibility that noise is beneficial for some genes. This occurs for
example in cases of bet hedging where a gene product brings little
or no fitness advantage at present, but expression is maintained
in case conditions change so that the gene product
becomes important. In such cases, theory and experiments have
shown that a wide cell–cell variation in protein level can be
beneficial51–55. Such genes expressed for possible future needs are
predicted to lie far above the boundary of the depleted region.
This prediction is in agreement with the finding of stress genes at
relatively high positions above the boundary, and of essential
genes closer to the boundary (Supplementary Fig. 5a, b, Supple-
mentary Table S2, Supplementary Data 1).

The theory has further testable predictions. By expressing
a protein from different synthetically produced combinations
of translation and transcription rates, one should find that
there is an optimal translation/transcription ratio. Upon changing
growth conditions such that the protein becomes even more
important for growth, the optimal transcription rate should
increase whereas the optimal translation rate should show little
change.

The finding that essential, high-precision genes are located
close to the boundary of the depleted region has implications for
synthetic circuit design. If a protein needs to have a specific
abundance for the circuit to function properly, that protein
should be expressed using a promoter and ribosomal binding site
that puts it close to the boundary of the depleted region. In
other words, the optimal design should have βp/βm= k with
a value of k appropriate to the organism (Table 1). On the
other hand, if the circuit is insensitive to the exact concentration
of that protein, the protein should be expressed using a weaker
promoter and stronger RBS to save transcriptional resources.
Combinations of strong transcription (promoters, enhancers)
with weak translation (RBS and so on) should be avoided because
they incur high transcriptional cost with no extra precision
benefit.

The present approach can also help interpret the mode of
regulation when the abundance of a protein needs to change.
Increasing a protein level can be done by increasing transcription,
translation, or both. Studies in several organisms indicate that
transcription regulation is more prevalent and strong than
translation regulation for most genes3,28,32,33,56. The present
theory provides a possible explanation for this observation
(Fig. 5b). Transcription regulation increases protein abundance
and at the same time decreases noise. Translation regulation will
increase noise. Thus transcription control is advantageous
assuming that precision is more desirable than economy. Preci-
sion could be more desirable than economy for genes which
become key to growth upon a change in condition, such as
amino-acids biosynthesis genes upon a sudden amino-acid
depletion (Supplementary Fig. 5j). For these genes, fluctuations
leading to low expression would be penalizing. This penalty can
be mitigated by increasing transcription. The relatively rare cases
of strong translation regulation may be due to considerations of
faster response time, or to cases where it is beneficial to reduce
precision, such as in bet hedging51. One interesting case is when
proteins need to be upregulated from a very-low to a very-high
level. Geometric considerations rule out a purely transcriptional
regulation, because this will put the gene into the depleted region;
instead, a combined transcription and translation upregulation is
predicted (Fig. 5c).

The present findings suggest that translation/transcription
ratios are determined to some extent by rules, such as precision-
economy trade-offs. Rules have been proposed in the past to

explain features of the complexity of biological systems57–59.
Patterns such as empty regions of the Crick space can help define
the rules, similar to the way empty regions of morphospaces in
animal morphology or single-cell gene expression can be used to
infer potential evolutionary tasks and trade-offs60–62. It would be
interesting to discover additional rules for gene expression in
order to interpret the evolved design of cells and to improve
engineering of synthetic circuits.

Methods
Central dogma rates and steady-state mRNA & protein abundance. Using a
commonly used formalism4,26, gene expression can be modeled as a dynamic
system. The system has two variables, m and p which represent the number of
mRNAs and proteins per cell.

mRNAs are transcribed at a rate βm [mRNA/h] and decay at a rate αm. Proteins
are translated at a rate βp [protein mRNA−1 h−1)] and decay at a rate αp.

The protein decay rate αp [h−1] combines the effect of 1. degradation αdeg [h−1]
and 2. dilution by cell growth and division which takes place at rate μ [h−1].
Thus αp= αdeg+ μ64. This consideration also applies to mRNA decay rates.
However, mRNA decay is typically much faster than the cell cycle time
(Supplementary Table 1). As a result, mRNA decay rate is set by the
degradation rate.

Using these reaction rates, we can write the dynamics of m and p as

dm
dt

¼ βm � αmm ð6Þ

dp
dt

¼ βpm� αpp: ð7Þ

To compute steady-state mRNA and protein abundance, we set dm/dt= dp/dt
= 0. Solving for m and p yields expressions for steady-state mRNA and protein
abundance as function of the central dogma reaction rates

m ¼ βm
αm

ð8Þ

p ¼ βmβp
αmαp

: ð9Þ

Data sources and cellular constants in four organisms. S. cerevisiae: We
obtained the processed Reads Per Kilobase per Million (RPKMs) of the
mRNAseq and RP experiments of Weinberg et al.29 from GEO (GSE75897). We
used the RiboZero mRNAseq experiment. Experimental measurements estimate
Nm= 60,000 mRNA copies per cell65 cellular volume at 37 μm3 (BNID10043066).
Given a protein concentration67 of 3 × 106 μm−3, we estimate that there are Np≃
1.1 × 108 proteins per cell. We used a cell division time of 99 min (BNID101310).
Given that the median protein half-life (excluding the dilution factor) is 45 min68,
the typical protein decay rate is αp= 60(log(2)/45+ log(2)/99)= 1.34 h−1. Eser
et al.69 estimated the typical mRNA decay rate at αm= 5.1 h−1. Multiple experi-
ments found a noise floor cv0≃ 0.116,17,70.

E. coli: From the sequence reads archive, we downloaded the mRNAseq reads
and RP reads from the experiments Li et al.3 performed in rich medium
(mRNAseq: SRR1067773, SRR1067774, RP: SRR1067765, SRR1067766,
SRR1067767, SRR1067768). We obtained the E. coli genome sequence and
transcriptome annotation from NCBI (accession NC_000913.3).

All genome mappings were performed using Bowtie2 in local alignment
mode. We discarded all technical reads as well as reads that mapped against non-
coding RNAs, defined as transcripts marked as ncRNA, rRNA, or tRNA in the
genome annotation. Remaining reads were mapped to transcripts marked as CDS
in the genome annotation. RP reads were mapped to coding transcripts after
trimming the first and last 5 codons to remove the effect of translation initiation
and termination. Reads that mapped equally well to multiple loci were assigned to
one of the loci at random. We then computed RPKMs per gene. Because
reproducibility between runs was high, we combined reads from all runs for
subsequent analyses.

The resulting mRNA abundances and protein synthesis rates estimates were
highly correlated with those computed by Li et al.3 (r2 > 0.99). Differences could be
due to the updated genome version we used (NC_000913.3 vs NC_000913.2 in the
original analysis of Li et al.), differences in the aligner (we used Bowtie2 while Li
et al.3 used Bowtie), and other differences in the implementation of the
bioinformatics pipeline. Repeating all the E. coli analyses using the protein
synthesis rates from Supplementary Table 1 and mRNA abundance Supplementary
Table S4 of Li et al.3 leads to minor changes in the exact position of genes in Crick
space and supports all conclusions presented in this article.
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There are 1380 mRNAs per cell (BNID100064). Cell volume is ≃1 μm3

(BNID100004). Assuming a protein concentration67 of 3 × 106 μm−3, there are about
3 × 106 proteins per cell. Doubling time was measured by Li et al.3 at 21.5min, which
puts the growth rate at μ= 60 log(2)/21.5= 1.93 h−1. RP RPKMs correlate well with
protein abundance3. This suggests that protein decay mainly takes place through
dilution. Thus, protein degradation can be neglected in estimating protein decay for
most proteins: αdeg= 0⇒ αp= αdeg+ μ= μ. The median mRNA half-life is 2.8
min71, which corresponds to decay rate αm= 14.9 h−1. The noise floor cv0 was
measured to be about 0.25: 0.27 ± 0.01 in Taniguchi et al.40, 0.22 ± 0.01 in Silander
et al.41.

M. musculus: We downloaded the processed RPKMs of the mRNAseq and RP
experiments of30 from GEO (GSE60426).

Given a 3T3 cell volume of V= 2000 μm326 and a protein concentration of 3 × 106

per μm3, there are Np≃ 6.0 × 109 proteins per cell67. Measurements suggest that there
are around Nm= 180,000 mRNAs per 3T3 cell26. Following experimental
measurements26, we used a cell cycle time of 24 h and a protein half-life of 48 h (after
removing the effect of cell division26). These numbers correspond to a growth rate μ
= 0.03 h−1 and a degradation rate αdeg= 0.01 h−1, which puts the protein decay rate
at αp= μ+ αdeg= 0.04 h−1. Friedel et al.72 found a median mRNA decay rate of αm
= 0.14 h−1 in 3T3 cells, which is the value we used here. Another study26, also in 3T3
cells, measured a median decay rate of αm= 0.08 h−1, a value for which the predicted
boundary is also in good agreement with rates measurements (Supplementary
Fig. 2k). To our knowledge, the noise floor cv0 hasn’t been measured in mouse. We
therefore used the noise floor from the closest organism in evolutionary terms, namely
H. sapiens.

H. sapiens: We downloaded the processed RPKMs of the mRNAseq and RP
experiments of30 from GEO (GSE60426).

Given a cellular volume of V= 2500 μm3 (BNID103725) and a protein
concentration67 of 3 × 106/μm3, there are about Np= 7.5 × 109 proteins per cell. A
division time of 22 h (BNID109393) corresponds to a growth rate μ= 0.03 h−1.
The protein degradation rate measurements of Cambridge et al.73 found αdeg=
0.02 h−1. This puts the effective protein decay rate at αp= μ+ αdeg= 0.05 h−1. We
could not find direct measurements of the number of mRNAs per HeLa cell Nm. A
back of the envelope calculation puts Nm in the 105–106 range67. This is consistent
with recent smFISH and RNAseq measurements which found 105 mRNAs in
MIN6 and 106 mRNAs in liver cells74. Starting with the 180,000 mRNAs per 3T3
cells26 and assuming that mRNA content scales with cell volume, we estimate Nm

≃ 180,000 × 2500/2000= 225,000 mRNA per HeLa cell. The accuracy of the
predicted boundary of the depleted region is robust to halving or doubling Nm

(112,500 <Nm < 450,000, see Supplementary Fig. 2l, m). Gregersen et al.75

measured mRNA half-lives in (human) HEK293 cells and found a median half-life
of 11.4 h, which we used to compute the mRNA decay rate (αm= 0.06 h−1).
Another study measured a median half-life of 5 h in human B-cells (BL41)72, a
value for which the predicted boundary of the depleted region is also in good
agreement with experimental data (Supplementary Fig. 2n). Dar et al.42 found a
noise floor cv0≃ 0.3.

Estimating transcription and translation from omics datasets. For each gene i,
we estimated the number of mRNAs per cell mi from the total number of mRNAs
per cell Nm from the per-gene mRNAseq RPKM ri data as

mi ¼ Nm
riP
j rj

: ð10Þ

At steady-state, mRNA abundance m is the ratio of the transcription rate βm to the
mRNA decay rate αm4. We thus estimated the transcription rates of each gene as

βm;i ¼ miαm ð11Þ

where αm is the median mRNA decay rate (Supplementary Table 1). Finally, we
estimated translation rates βp by combining three numbers: the total number of
proteins per cell Np, the protein decay rate αp, and the gene’s RP RPKM si of gene i.
The number of proteins synthesized per time unit is Npαp. A fraction si=

P
i si of

this protein synthesis flux is translated from mRNAs mi of gene i. We estimate the
translation rate βp,i (expressed per mRNA copy per cell) by dividing the protein
synthesis of each gene by the mRNA copy number mi:

βp;i ¼
Npαp
mi

siP
j sj

: ð12Þ

Estimates of Np and αp are provided in Supplementary Table 1.
To address the concern that gene-to-gene variations in the translation

elongation rate may bias our estimates, we compared protein synthesis rates
computed from protein abundance and decay data pαp measured by mass-
spectrometry26 to the protein synthesis rates estimated from ribosomal
density βpm29 on the same cell line (Mouse 3T3). We find that protein synthesis
rates correlate well (Supplementary Fig. 1e, r= 0.70, p < 10−15 at Pearson’s
test on more than 3000 genes). This agreement is probably due to the fact
that although elongation rates vary from gene to gene, the initiation rates vary
more (3-fold versus 1000-fold)76. Thus the latter tend to determine most of the
variation.

To evaluate the effect of this simplification, we plot genes in 2D Crick space
taking gene-specific mRNA and protein decay rates into account (Supplementary
Fig. 1f). We then assign the same median mRNA and protein decay rates to
all genes to re-estimate transcription and translation rates (Supplementary Fig. 1g).
The gene positions in the two resulting 2D Crick spaces differ by less than 0.3
(root mean square deviation in log10 rates), which is ≃10% of the total variation
(about 3 log10 units in transcription and translation rates). We conclude that
taking into account gene-specific mRNA and protein decay rates has only a
small impact on the position of genes in 2D Crick space and thus on present
conclusions.

Sequencing data processing. We consider only genes for which the measurement
error was small enough to allow accurate estimation of transcription and trans-
lation rates. Accurate estimation of these rates is difficult for low abundance
mRNAs because they may only collect a handful of reads. This leads to a large
uncertainty on the mRNA copy number m, and thus on the transcription rate βm
=mαm. How many reads per gene should we require to be confident about our
estimates of transcription rates?

Estimates of mRNA abundance m scale with the number of reads n mapping to
a given gene (relative to the gene length). We thus compute the minimum number
of reads per gene needed to keep the sampling noise on log10 mRNA abundance
below a certain threshold ε

log10
nþ σ

n

� �
< ε ð13Þ

where σ is the standard deviation on n due to the sampling error. We model
sequencing as a Poisson process, and thus σ ¼ ffiffiffi

n
p

. Substituting this expression for
σ into Eq. (13), we compute the minimal number of reads necessary to control for a
given error ε on log10 mRNA abundances:

n>
1

10ε � 1

� �2

: ð14Þ

A minimum of 10 reads per mRNA is needed to keep the sampling error on
log10 transcription rates in the ±0.1 range (Supplementary Fig. 2o). We therefore
discard genes with less than 10 reads per gene, a procedure which keeps the
sampling error low while keeping as many genes as possible in the analysis.
Similarly, we require at least ribosomal profiling 20 reads per gene. We applied the
same criteria to all four organisms. We repeated the analyses keeping only genes
with at least 100 RP reads and reached the same conclusions as the one presented
in the article.

In M. musculus and H. sapiens, we discarded canonical histone genes from the
analysis because their mRNAs lack a polyA-tail. The polyA+ selection step of
mRNAseq discriminates against these mRNAs. Consequently, the abundance of
canonical histone mRNAs is underestimated by mRNAseq RPKMs, leading to
aberrant (high) translation rate estimates.

Estimating maximal translation rates. To estimate the maximal translation rate,
we ask how fast proteins can be translated βmax

p from a single mRNA in the limit
where translation initiation is no longer limiting. In this regime, ribosomes follow
each other closely along the mRNA. A given ribosome needs to move forward
before the next one can advance. The speed at which ribosome elongate the peptide
chain and how many codons each ribosome occupies on the mRNA determine how
fast proteins can be synthesized.

If a ribosome occupies L codons on the mRNA and v codons are translated into
amino-acids per second, it takes L/v seconds for a ribosome to free space for the
next ribosome. The maximal flux of ribosomes at given codon is thus v/L. This flux
sets an upper bound on the translation rate: βmax

p ¼ v=L.
In S. cerevisiae, the elongation rate v in favorable growth conditions is 10

amino-acids per second (BNID107871). Each ribosome occupies 28 nucleotides
(BNID107874), so L= 9.3 codons. This puts the maximal translation rate βmax

p at
103.6 proteins per hour. This bound is in good agreement with estimated
translation rate in S. cerevisiae and other eukaryotes.

In E. coli, translation rate can be up to 104 proteins per hour (Fig. 2). While the
size of ribosomal footprints have not been determined, prokaryotes have smaller
ribosomes (21 nm, BNID102320) than eukaryotes (26.5 nm, BNID111542) and so
ribosomal footprints should be smaller. Assuming that ribosomal footprints are
proportional to the size of the ribosome, we estimate that prokaryotic ribosomes
cover 22 nt or L= 7.3 codons. In favorable conditions, E. coli can elongate up to v
= 21 amino-acids per second (BNID100059). This leads to a maximal translation
rate of βmax

p ¼ 104 proteins per hour.

Testing the statistical depletion of genes in Crick space. To test for a statistical
significant depletion of genes combining high transcription with low translation,
we used a randomization strategy.

First, we defined the depleted region as the sub-region of the Crick space lying
below a line of slope 1 that has 1% of the genes below it. We defined the depleted
region in this way because yielded a visually convincing fit between the boundary
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and the data in all four organisms, using a uniform criteria. We then asked if this
figure of 1% was high or low compared to chance.

To find out, we randomized transcription and translation rates. Because the
main goal of gene expression is to express proteins at the right abundance, we
required that randomized datasets have the same distribution of protein abundance
as the original dataset. Also, we enforced the observed upper bound βp,max on
translation rates. To do so, we randomly sampled a protein abundance p and a
translation rate βp for each gene. We then computed the corresponding
transcription rates βm= pαmαp/βp, with αm and αp the mRNA and protein decay
rates reported in Supplementary Table 1. Finally, we determined what fraction of
genes in the randomized dataset were found below the line of slope 1 and leaving
1% of the genes of the original dataset below it.

We repeated the procedure 104 times to determine the distribution of the
fraction of genes in the depleted region expected by chance. We finally estimated
the p-value that genes avoid combining high transcription with low translation
from the fraction of randomized datasets with more genes in the depleted region
than the original dataset.

Estimating transcription and translation for synthetic genes. We compared the
distribution of transcription and translation rates of E. coli genes to that of the
synthetic constructs library of Kosuri et al.38. This study quantified the mRNA and
protein abundance of each construct. The constructs only differed in their ribo-
somal binding sites and promoters. We thus assumed that they shared the same
mRNA decay rates and protein decay rates. As a result, the transcription rate of
each construct is proportional to mRNA abundance. Translation rates are pro-
portional to the ratio of protein abundance to mRNA abundance.

To compare these measurements to our absolute transcription and translation
rates estimates of E. coli genes, we assumed that the strongest promoters and RBSs
of Kosuri et al.38 yielded transcription and translation rates comparable to E. coli’s
strongest promoters and RBS. We did so by aligning the 99th percentiles of the
transcription and translation rates of the synthetic constructs to those of E. coli
genes.

The conclusions of the comparison are robust to this assumption. For instance,
even if we assume that the strongest Kosuri promoters and RBSs achieve
transcription rates 10 times higher or lower than the strongest E. coli promoters
(i.e., shifting the red cloud of Fig. 2e to the right or to the left by one unit), the high
transcription–low translation region would still be covered by a sizable fraction of
synthetic constructs.

Expression for the fitness cost of transcription. Experiments and theory suggest
that the fitness cost of transcription Δfm scales with the transcription rates21,22 and
(pre-)mRNA length19,77. For a pre-mRNA of length lm and transcription rate βm,
we thus write the fitness cost of transcription Δfm as

Δfm ¼ cmlmβm ð15Þ

where the constant cm rescales transcription fluxes (nucleotides per hour) into
fitness units (per hour).

The exact biochemical process responsible for the cost of transcription costs
is still under debate. The main candidates include the limited availability of the
RNA polymerase which limits the initiation step21 and the availability of
nucleotides18.

To estimate the proportionality constant cm, we hypothesize that transcriptional
resources are limiting. In this case, making one non-beneficial mRNA comes at a
cost because it replaces mRNAs coding for fitness-contributing proteins, which
leads to a loss of fitness. On average, the fitness contribution of a useful mRNA is
μ
Nm

where μ is the growth rate and Nm ¼ P
βm=αm is the total number of mRNAs

per cell. Therefore, the fitness cost of making m= βm/αm mRNAs is

Δfm ¼ μ

Nm
m ¼ μ

lmNm
lm

βm
αm

: ð16Þ

By identifying the terms in Eqs. (15) and (16), we see that cm can be estimated from
the growth rate μ, the typical pre-mRNA length lm and the total transcriptional
capacity

P
βm

cm ¼ μ

lmαmNm
¼ μ

lm
P

βm
: ð17Þ

cm has units of nt−1. Alternatively, cm can also be expressed per mRNA copy
(which we will use in the next section):

cm ¼ μP
m

¼ μ

Nm
ð18Þ

where Nm is the number of mRNAs per cell.

Predicting mRNA cost from cellular constants in E. coli. In this section, we show
that the expression for cm derived in the previous section predicts the fitness cost of
synthesizing mRNA in E. coli. For this, we use the data of Kosuri et al.38 who
quantified the abundance of 10,000 different clones that express a fluorescent

protein under the control of different promoters and RBSs. As a result, different
clones express the fluorescent protein at a different abundance p, from a different
number of mRNAs m.

We model mRNA and protein cost cm and cp as linear penalties on the growth
rate μ

μ ¼ μ0 � cpp� cmm ð19Þ

where μ0 is the rate at which cells would grow in the absence of a fluorescent
protein construct. If cells are growing exponentially for t hours, the concentration
xm,p(t) of a clone that expresses m non-beneficial mRNAs and p proteins is

xm;pðtÞ ¼ xm;pð0Þeμt : ð20Þ

We can normalize xm,p(t) to the concentration of clones x0,0(t) that express m and p
at low levels and hence don’t experience a growth penalty (μ≃ μ0):

log
xm;pðtÞ
x0;0ðtÞ

¼ �tcpp� tcmm: ð21Þ

Here, we have assumed that the transformation efficiency of clones is independent
of m and p (xm,p(0)≃ x0,0(0)). We estimate xm,p(t)/x0,0(t) from the ratio between the
DNA counts of each clone and the DNA counts of clone that expressed low levels
of GFP (prot < 1.5 × 103 in Table S3 of Kosuri et al.38).

To test if mRNA cost is selectable, we perform two linear regression analyses:

one regression of log
xm;pðtÞ
x0;0ðtÞ on p alone, and one regression of log

xm;pðtÞ
x0;0ðtÞ on p and m.

Using the F-test for nested linear models, we find that the squared residuals for the
regression on m and p are significantly smaller than the squared residuals for the
regression on p alone (p < 10−15). Therefore, a model that accounts for mRNA and
protein cost is significantly more accurate at predicting fitness than a model that
account for protein cost alone. This suggests that the cost of synthesizing mRNA is
selectable in E. coli.

The linear regression estimates of mRNA and protein cost are tcm= 4.0 × 10−2

mRNA−1, and tcp= 2.2 × 10−6 protein−1.
Since the growth time t is not known precisely, we cannot determine cm and cp

individually. But we can determine their ratio: cm/cp≃ 630. The fitness cost of
transcription theory introduced in the previous section (Eq. (18)) predicts

cm
cp

¼ Np

Nm
’ 2100 ð22Þ

where Np is the total number of proteins per cell and Nm is the total number of
mRNAs per cell (Supplementary Table 1). Given the typical uncertainty on
measurements of Np and Nm (2-fold), the 95% confidence for cm/cp ranges from 300
to 14,000. We thus find that predictions of mRNA and protein cost agree with the
measurements of Kosuri et al.38.

Finally, we test whether the theoretical estimates for cm and cp,

cm ¼ μ0
Nm

; cp ¼
μ0
Np

; ð23Þ

can predict the abundance of clones. While we need to know the growth time t to
predict clone abundance, the correlation between measured and predicted clone
abundance is independent of t (see Eq. (21), which relates clone abundance to the
growth time and the costs of mRNA and protein).

We find a positive correlation between predictions and measurements of clone
abundance (r= 0.67, p < 10−15). We set t to one day (t= 24 h) in Supplementary
Fig. 3b to illustrate the correlation.

In conclusion, the cost of mRNA synthesis in E. coli can be predicted from the
growth rate and the total transcription output.

Estimating the fitness cost of mRNA in S. cerevisiae. Here we estimate the
growth penalty of transcription in S. cerevisiae from the measurements of Kafri
et al.21. This study introduced a fluorescent protein construct of pre-mRNA length
lm at different copy numbers n in the S. cerevisiae genome. The protein abundance
p of the fluorescent protein depended on the genomic copy number of the con-
struct, as did the transcription rate βm.

This study found that the growth rate μ decreases linearly with the genomic
copy number n of the fluorescent protein construct,

μ ¼ μ0 � n cppþ cmlmβm

� �
ð24Þ

where μ0 is the growth rate of the WT strain, cm is the growth penalty of
transcription (expressed per transcribed nucleotide) and cp is the protein burden
(growth penalty per protein). To compare cost across growth conditions, the study
normalized the growth rate μ of strains with genomic insertions of the construct to
that of WT μ0 (e.g., Fig. 4b of Kafri et al.21):

μ

μ0
� 1 ¼ �n

cppþ cmlmβm
μ0

� �
: ð25Þ
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Following the notation of Kafri et al.21, we call sN the slope of the relative growth
rate μ/μ0 as function of the genomic copy number of the construct n. We can write
sN in terms of the fitness cost parameters cm and cp:

sN ¼ cppþ cmlmβm
μ0

: ð26Þ

To distinguish between the cost of protein and transcription, Kafri et al.21

designed a second construct (DAmP) lacking a terminator, which makes the
mRNA unstable. This reduces protein synthesis between 10 fold (according to
protein fluorescence) and 30 fold (according to qPCR) with minimal effect on
transcription21. Similar to sN, Kafri et al.21 defined sD as the slope of μ/μ0 as a
function of the genomic copy number n of the DAmP construct. We can also write
sD as a function of fitness cost parameters cp and cm:

sD ¼ cpϕpþ cmlmβm
μ0

ð27Þ

where the factor ϕ accounts for the decrease in protein synthesis of the DAmP
strains.

From experimental measurements of sN, sD, ϕ, lm, and βm, one can estimate the
translation cost per nucleotide cm:

ϕsN � sD ¼ cmlmβmðϕ� 1Þ
μ0

) cm ¼ μ0
sD � sNϕ

lmβmð1� ϕÞ : ð28Þ

Experiments in YPD medium21 measured the following values: sN≃ 9.0 × 10−3, sD
≃ 4.1 × 10−3, lm≃ 1000 nt/mRNA, ϕ≃ 0.06, βm≃ 1300 mRNAs h−1, and μ0≃ 0.42
h−1. Plugging in these values in Eq. (28) estimates the fitness cost cm per
transcribed nucleotide,

cm ’ 1:2 ´ 10�9 nt�1: ð29Þ

All parameters are known up to two significant digits, except for ϕ (10 ≤ ϕ−1 ≤ 30),
which is known up to one significant digit. This puts the measurement uncertainty
at ±1 × 10−9 nt−1.

Predicting mRNA cost from cellular constants in yeast. Plugging the cellular
constants of S. cerevisiae from Table 1 into the formula for cm (Eq. (17)) estimates
the transcription cost at cm ¼ μ0=

P
βmlm ’ 1:2 ´ 10�9 nt�1. This value is in

excellent agreement with the experimental measurements of Kafri et al.21. Such an
agreement between experimental fitness parameters in the order of the 10−9 may
appear surprising given the typical accuracy of biological measurements. The
reason for such a good agreement is that the parameters are expressed per tran-
scribed nucleotide whereas actual measurements were performed for full-length
mRNAs of a highly transcribed S. cerevisiae gene. Because both the transcript
length lm and the transcription rates βm are in the order of 103 in the experiments
of Kafri et al.21, we are actually comparing fitness parameters in the order of 10−3,
which are accessible experimentally.

Plotting the coefficient of variation over Crick space. We obtained measure-
ments of the coefficients of variation cv of S. cerevisiae and E. coli genes from the
studies of Newman et al.17 and Taniguchi et al.40. To determine the contours of cv
as a function of transcription and translation, we first applied a Gaussian smoother.
The smoother estimates the coefficient of variation cv for given transcription βm
and translation βp rates from a weighted average of genes with similar βm and βp.
Genes with comparable βm and βp weight more in the average than genes with very
different βm and βp.

Formally, we estimated cv(βm, βp) as a weighted average,

cv βm; βp

� �
¼ 1P

j
wj

X
i

wicv;i ð30Þ

where the Gaussian weights wi are defined as:

wi ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e
�1

2

βm�βm;i
σ

� �2
þ βp�βp;i

σ

� �2
h i

: ð31Þ

We set the smoothing width σ to one fifth of the data range. We only plotted
contours of cv(βm, βp) for densely populated regions of the Crick spaceP

wi � 200ð Þ.

Protein fluctuations as a function of the central dogma rates. In this section, we
derive an expression for the coefficient of variation cv as a function of the tran-
scription rate βm, the protein abundance p and the protein decay rate αp. Following
a extensive line of theoretical and experimental research15,78, we model gene
activation and inactivation as a telegraph process (Supplementary Fig. 3c). Genes
are activated at a rate kon and inactivated at a rate koff. Active genes synthesize
mRNAs at a rate δ. Messenger RNAs are translated into proteins at a rate βp and

degrade at a rate αm. At steady-state, the coefficient of variation cv on protein
abundance of this stochastic process can be computed analytically15:

c2v ¼ σ
p

� �2

¼ 1
p þ

αpαm
βm αpþαmð Þ

þ αpαmkoff αpþαmþkoffþkonð Þ
kon αpþαmð Þ αpþkoffþkonð Þ αmþkoffþkonð Þ

ð32Þ

The first term of the equation accounts for the Poisson noise on protein abundance
stemming from the protein birth-death process. The second term accounts for the
noise caused by translating proteins from mRNAs of low copy number. The last
term models the noise caused by gene activation and inactivation and transcrip-
tional bursting.

At present time, it is difficult to measure koff and kon genome-wide
experimentally. We therefore seek a simplified, approximate expression for
the coefficient of variation cv in which these parameters occur only implicitly
through the transcription rate βm. Note that βm and kon, koff are related to each
other,

βm ¼ δPon ¼ δ
kon

kon þ koff
ð33Þ

where δ is the transcription rate when the gene is in the on state, and Pon is the
fraction of time when the gene is active.

E. coli: With a median half-life of 2.5 min71, mRNAs decay much faster than
proteins ðαm � αpÞ. In addition, protein decay αp is mainly set by the cell division
time (20 min or longer)79, which is slow compared to gene inactivation which takes
place at the time-scale of seconds78 ðkoff � αpÞ. In this regime, we can
approximate the analytical expression for the coefficient of variation (Eq. (32)) as:

σ

p

� �2

’ 1
p
þ αp

1
βm

þ koff
kon koff þ konð Þ

� �
: ð34Þ

The gene activation rate kon≃ 10 h−1 is largely constant across E. coli promoters, in
contrast to koff which determines the transcription rate βm78. Using Eq. (33) which
relates the transcription rate βm to gene (in-)activation rates kon and koff, we can
rewrite the coefficient of variation in terms of βm,

σ

p

� �2

’ 1
p
þ αp
βm

þ αp
1� βm=δ

kon
ð35Þ

where δ≃ 800/h and kon≃ 10/h78.
The Poisson noise term 1/p is typically negligible compared to the two

other terms. The small mRNA copy number noise term αp/βm dominates at low βm
(Supplementary Fig. 3d). This term is consistent with the observation that
protein noise initially decreases with protein abundance (Fig. 4c, Supplementary
Fig. 4b, c), and that protein noise decreases with transcription (Fig. 3b).

The third term (gene activation noise) becomes dominant for large βm
(Supplementary Fig. 3d). Because the third term is almost a constant for
physiological values of βm (Supplementary Fig. 3d), we ask whether it could explain
the noise floor found in the single cell experiments of Taniguchi et al.40 and
Silander et al.41.

In the growth conditions of Taniguchi et al.40, the doubling time was
150 min, which implies a protein decay rate αp= 0.28 h−1. Plugging this αp in
Eq. (35), the third term is about 0.03, which is two-fold below the noise floor
c2v0 ¼ 0:07 observed in the measurements of Taniguchi et al.40 (Fig. 4c). In
Silander et al.41 grew E. coli in M9+ 0.2% arabinose, a condition in which
αp≃ 0.45 h−180. With this αp, the third term is about 0.04, which is comparable to
the noise floor c2v0 ’ 0:05 in the measurements of Silander et al.41 (Supplementary
Fig. 4b).

We conclude that gene activation noise may explain the noise floor in the
measurements of Silander et al.41. In the experiments of Taniguchi et al.40, gene
activation noise is too small to explain the noise floor. There, the noise floor may be
explained by other factors such as as extrinsic noise9,40. Independently of the
specific cause of the noise floor, we model it as a phenomenological constant
c2v0 ’ 0:06 inferred from the measurements of Taniguchi et al.40 and Silander
et al.41 (or cv0≃ 0.25). This yields an expression for the noise that is accurate with
both datasets,

σ

p

� �2

¼ 1
p
þ αp
βm

þ c2v0: ð36Þ

S. cerevisiae, H. sapiens, M. musculus: In eukaryotes, an approximate expression
for the coefficient of variation can also be derived, but is slightly more complicated
because the separation of time-scales is less clear than in E. coli: messenger RNAs
decay typically faster than proteins, but not by a full order of magnitude. A more
realistic, data-driven assumption is

αm ¼ qαp ð37Þ
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with q ≃ 3 (Supplementary Table 1). Measurements in S. cerevisiae65 and H.
sapiens42 suggest that gene activation dynamics are much faster than protein decay,

kon þ koff � αp: ð38Þ

Under these assumptions, we can approximate the analytical expression for the
coefficient of variation (Eq. (32)) as

σ

p

� �2

’ 1
p
þ αp
βm

q
1þ q

1þ βmkoff
kon koff þ konð Þ

� �
: ð39Þ

Using Eq. (33) which expresses transcription βm as function of gene (in)activation
parameters kon, koff, δ, we can eliminate βm from the last term:

σ

p

� �2

’ 1
p
þ αp
βm

q
1þ q

1þ δ

koff
1� Ponð Þ2

� �
: ð40Þ

We also eliminate δ by introducing the transcriptional burst size b, which is the
average number of mRNAs that are synthesized each time the gene is activated:

b ¼ δ

koff
: ð41Þ

Plugging Eq. (41) for b into Eq. (40) for c2v , we obtain:

σ

p

� �2

¼ 1
p
þ αp
βm

ϕ ð42Þ

where

ϕ ¼ q
1þ q

1þ b 1� Ponð Þ2� �
ð43Þ

accounts for gene activation dynamics.
Except for highly expressed genes, the transcriptional burst size b is

typically small (b≃ 1)12. For q= 3 (Supplementary Table 1), varying Pon across its
full range causes ϕ to vary only between 0.75 and 1.5 (Supplementary Fig. 3e).
Hence, in the worst case, neglecting gene activation dynamics by setting ϕ= 1
would result in a 1.5-fold error on c2v . We conclude that neglecting gene
activation dynamics by setting ϕ= 1 in Eq. (42) for c2v results in a reasonable
approximation of the coefficient of variation for most genes, except for highly
expressed genes.

For highly expressed genes, experiments in S. cerevisiae17 and H. sapiens42

found a noise floor. This noise floor might occur when the transcription rate
exceeds the maximal rate of gene activation42. In this scenario, high transcription
rate can only be achieved by increasing the burst size b12,42. Since b is not a
constant in the large βm regime, we rewrite b as in terms of the transcription rate
βm. To do so, we combine Eq. (33) which expresses βm in terms of the kinetic rates
of gene activation (kon, koff, δ) and Eq. (41) which defines the burst size b in terms
of δ and koff to find

b ¼ δ

koff
¼ βm

Ponkoff
: ð44Þ

Plugging in this expression for b in Eq. (42) eliminates the burst size:

σ

p

� �2

¼ 1
p
þ q
1þ q

αp
βm

þ q
1þ q

1� Ponð Þ2αp
koffPon

: ð45Þ

Neglecting the 1/p term which is in the order of 10−3 or smaller, we can get an
expression for the noise floor cv0 by taking the limit of large βm. In this limit, the
second term in Eq. (45) vanishes and c2v approaches

c2v0 ’
q

1þ q

1� Ponð Þ2αp
koffPon

: ð46Þ

Plugging in gene activation parameter values typical for H. sapiens42 (Pon= 0.18,
koff= 2 h−1) and setting q= αm/αp= 3, αp= 0.05 h−1 (see Table 1) puts the noise
floor cv0 at 0.27, a value comparable to experimental observations42 (cv0≃ 0.3).
Hence, the noise floor on protein abundance could occur when transcription rates
saturate gene activation kinetics. In this case, substituting Eq. (46) for c2v0 into Eq.
(45) leads to:

c2v ¼
σ

p

� �2

’ 1
p
þ αp
βm

þ c2v0: ð47Þ

This final expression is identical to the one we previously derived for E. coli
(Eq. (36)). It would also hold if the noise floor was caused by a mechanism
different from the transcriptional saturation of gene activation dynamics, such as
extrinsic noise. Note that we neglected the q/(1+ q) term of Eq. (45). This is
because the resulting approximation error on c2v would be less than 50%
(Supplementary Fig. 3e). Because βm scales inversely with c2v (Eq. (47)), neglecting

gene activation kinetics implies at most a 50% error on βm, or equivalently a 0.2
error on log10βm. This is small compared the dynamic range of transcription rates
which vary over 2–3 order of magnitudes.

Expression for the optimal translation/transcription ratio. We consider a
protein of abundance p. The protein contributes a quantity f(p) to the organism’s
fitness. The cost of transcription Δfm is linear in the transcription rate βm, the (pre-)
mRNA length lm and the fitness cost of transcription per nucleotide cm,

Δfm ¼ cmlmβm: ð48Þ

The overall fitness is thus F= f(p)− Δfm. The fitness function f(p) reaches its
maximum fmax at p= p* (Fig. 4a). Expanding f(p) around the optimum p= p* to
second order, the overall fitness becomes

F p; βm
� � ’ fmax þ f ′ p�ð Þ p� p�ð Þ

þ 1
2 f ′′ p

�ð Þ p� p�ð Þ2�Δfm:
ð49Þ

f′(p*)= 0 since f(p) reaches its optimum fmax at p= p*. f″(p*) is the curvature of the
fitness function at its maximum. It is a negative number which characterizes how
narrow the fitness function is.

Because protein abundance fluctuates around p*, the cell doesn’t experience the
maximum fitness fmax but rather a lower average fitness fh i. Averaging F over
fluctuations in protein abundance, we obtain

F p; βm
� �
 �¼ fmax þ 1

2 f ′′ p
�ð Þσ2 � cmlmβm

¼ fmax � Δfnoise � Δfm
ð50Þ

where σ2 is the variance of protein abundance fluctuations (Fig. 4a). The
curvature times this variance, � 1

2 f ′′ p
�ð Þσ2, is the noise load Δfnoise, the fitness

lost due to the stochastic fluctuations in protein abundance24,25 (Fig. 4a). It
is a positive quantity because the curvature f″(p) is negative at the maximum
p= p*.

We seek the transcription rate βm that maximizes fitness. For this purpose we
note that βm affects the noise level σ2 in a well-characterized way. Theory and
experiments of gene expression noise15–17,40 indicate that variance of protein noise
is given by

σ2 ’ p2
1
p
þ αp
βm

þ c2v0

� �
ð51Þ

where αp is the protein decay rate and cv0 is the noise floor due to extrinsic noise40

or the larger transcriptional burst size of high abundance proteins42 (see previous

section). We can now solve for the βm that maximizes fitness, by finding d Fh i
dβm

¼ 0.

The optimal translation/transcription ratio rate βp/βm satisfies

βp
βm

¼ 2cmlmαm
�f ′′ p�ð Þp� ¼

C
Q

ð52Þ

where we have used p� ¼ βmβp
αmαp

. Note that we introduced two new variables C and Q.

C :¼ cmlmαm ¼ cmlmβm=m ¼ Δfm=m ð53Þ

represents the fitness cost of transcription per mRNA molecule for a gene with pre-
mRNA length lm.

Q :¼ � 1
2
f ′′ p�ð Þp� ð54Þ

is the gene’s sensitivity to noise. Genes with narrower fitness functions
f ′′ p�ð Þ � 0ð Þ are more noise sensitive. A gene’s sensitivity to noise also depends on
p* because stochastic fluctuations σ2 scale with p* (Eq. (51)).

From the expression for the optimal βp/βm (Eq. (52)), we see that genes
dominated by comparable requirements of precision and economy are predicted to
share the same translation/transcription ratio. Genes with narrow fitness function
require more precision and thus have lower translation/transcription ratios
(Fig. 4b). Higher transcription cost per mRNA molecule—due to longer mRNAs lm
or rapid mRNA turn-over αm or a scarcity of nucleotides leading to increased cost
cm—shifts the balance towards higher ratios.

Note that the translation/transcription ratio does not depend on translation
cost, although this cost is typically larger than transcriptional cost18,20,21. This is
because we assumed that, for a given protein abundance, translation cost are the
same if the proteins are synthesized from few or many mRNAs.

Predicting the boundary of the depleted region of Crick space. In this section,
we ask what is the predicted offset of the line that forms the boundary of the
depleted region, namely the constant k such that βp/βm > k for all genes. We
provide estimates based on known fundamental parameters of cell biology sug-
gested by the theory.
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To estimate k, we note that the precision-economy theory predicts that low βp/
βm occur for genes with narrow fitness functions (Eq. (52), Fig. 4b). But the noise
floor cv0 (Fig. 4c) sets a limit on how narrow fitness functions can be: for fitness
functions that are too narrow given the noise floor, average fitness is negative
(Fig. 4d). Such fitness functions cannot be selected for in evolution. We can
therefore estimate the maximal transcription rate by determining the largest,
selectable fitness function curvature, and then compute the optimal transcription
rate for that function. The curvature should be small enough that the smallest,
unavoidable protein fluctuations (set by the organism’s noise floor cv0) do not
dominate the fitness benefit of expressing the protein. In other words, the
fitness benefit of expressing the protein fmax should be larger than the noise
load Δfnoise:

fmax � Δfnoise>0 ) fmax �
1
2
f ′′ p�ð Þj jσ2>0: ð55Þ

Here we neglected mRNA cost because for proteins with narrow fitness functions,
it is small compared to the noise load Δfnoise.

If fitness is mainly set by the growth rate μ, the fitness contribution fmax of a
gene cannot be larger than the growth rate: fmax < μ. In addition, fluctuations
cannot be smaller than the noise floor, σ/p* > cv017,40–42. From these two
considerations, we can compute an upper bound on the noise sensitivity Q,

Q ¼ 1
2
f ′′ p�ð Þj jp�< fmax

p�c2v
<

μ

p�c2v0
: ð56Þ

By substituting this upper bound in Eq. (52) for the optimal βp/βm, we find an
upper bound on βmax

m on transcription rates

βm<β
max
m ¼ 1

cv0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
αpαmμ

C

r
: ð57Þ

We now consider the (hypothetical) protein expressed at maximal transcription
βmax
m and maximal translation βmax

p . This protein has highest protein abundance p*.
It also has narrowest fitness function (narrower fitness are not selectable due to the
noise floor), and thus highest noise sensitivity Qmax. We can plug Eq. (57) for βmax

m
into Eq. (52) for the optimal βp/βm to find Qmax:

βmax
p

βmax
m

¼ C
Qmax

) Qmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αpαmμC

p
βmax
p cv0

: ð58Þ

In this expression, we can see that a higher noise floor implies that genes need to be
less sensitive to noise. We now use Qmax in the Eq. (52) for the optimal βp/βm to
find k,

βp
βm

¼ C
Q
>

C
Qmax

¼ k ) k ¼ βmax
p cv0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C

αpαmμ

s
¼ βmax

p cv0

ffiffiffiffiffiffiffiffiffi
cmlm
αpμ

s
ð59Þ

where we have used C= cmlmαm (Eq. (53)). The fitness cost per transcribed
nucleotide cm can be estimated from the average contribution of each nucleotide of
each mRNA to the organism’s fitness, cm ¼ μ=

P
βmlm (Eq. (17)). Neglecting

differences in mRNA length between genes, we finally find:

k ’ βmax
p cv0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αp
P

βm

q : ð60Þ

Thus, the lowest translation/transcription ratio can be predicted from measurable,
fundamental parameters of each organism.

In this derivation, we have assumed that the gene’s contribution to fitness fmax is
smaller than the growth rate μ, fmax < μ (Eq. (56)). For essential genes, fmax≃ μ. For
non-essential genes, we can use a tighter upper bound on fmax:

fmax<ρμ ð61Þ

with 0 < ρ < 1. For example, if deleting a gene decreases fitness by 1% or less, we
have ρ= 0.01. By repeating the derivation, we find

k ’ βmax
p cv0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αpρ

P
βm

q : ð62Þ

Thus, for non-essential genes ρ � 1ð Þ, the predicted boundary of the depleted
region has higher intercept.

In the Supplementary Methods, we consider alternative theories to explain the
boundary of the depleted region, such as the existence of a power-law scaling of
mRNA noise with mRNA abundance. None of the alternative theories can explain
the depleted region.

Code availability. We deposited the code used to produce the figures of the present
manuscript at Mendeley data, https://doi.org/10.17632/2vbrg3w4p3.1 [https://data.

mendeley.com/datasets/2vbrg3w4p3/draft?a=955cbbdf-9f26-4fbb-970b-
e6b4081c1f3e].

Data availability
The data (RPKMs from RNAseq and ribosomal profiling) from which we estimated
transcription and translation rates was deposited at Mendeley data, https://doi.org/
10.17632/2vbrg3w4p3.1 [https://data.mendeley.com/datasets/2vbrg3w4p3/draft?
a=955cbbdf-9f26-4fbb-970b-e6b4081c1f3e]. Estimated transcription and transla-
tion rates are also found at that address. In addition, downloadable tables contain
extra fields (such as coefficient of variation on protein abundance fluctuations)
needed to reproduce Figs. 3b and 4c.
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