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Abstract

Algal and invertebrate species are less abundant towards higher zones of the intertidal, where the greatest variations

in physical environmental conditions occur. Mobile predators such as fishes that inhabit high intertidal rockpools are

thus exposed to wide variations in physical conditions and to a low abundance and quality of food. We used an

aquarium with a temperature gradient in the laboratory to assesed whether dietary quality differences modify

temperature preferences of Girella laevifrons, one of the most abundant transitory fishes inhabiting rocky shores along

the coast of Chile. Our results indicate that food quality clearly modifies temperature preferences in this species.

Animals fed on high quality bivalves selected intermediate temperatures (16–18�C) while those fed on lower quality

algae selected lower temperatures (10–12�C). Control fish not subjected to the temperature gradient did not select

portions of the aquarium differentially. The thermal selectivity of G. laevifrons in relation to the optimization of

digestive processes and mechanisms of energy conservation are discussed.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Both biotic and abiotic environmental conditions are

known to be heterogeneous. Among abiotic factors,

temperature has been documented as one of the most

important factors determining distributional patterns

of ectotherms, particularly among marine organisms

(Norris, 1963; Spicer and Gaston, 1999; Somero, 2002;

see Tomanek and Helmuth, 2002 and related papers in

the symposium), as it affects biological processes such as

food assimilation and growth rates (Pulgar et al., 1999;

Morgan and Metcalfe, 2001), together with life history

strategies (Tracy and Christian, 1986; Cossins and

Bowler, 1987; Wieser, 1991; Lenski and Bennett, 1993;
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Parsons, 1993; Stephen and Porter, 1993). In the context

of energetics, heat and food energy budgets interact

through their effects on body temperature and metabo-

lism (Porter and Gates, 1969; Dent and Lutterschmidt,

2003).

Heat exchange sets the body temperature but is

modified by thermoregulatory behavior. Metabolism is

temperature dependent but also tends to raise body

temperature and may alter behavior (Spotila and

Standora, 1985). In essence, an overall framework that

combines both heat and food energy budgets could help

us understand the roles of heat exchange and resource

allocation in the life histories of animals. More

specifically, ambient temperature, together with body

size, and the quality of food have are the three principal

factors determining rates of assimilation (Kooijman,

2000).

In the intertidal system, rockpools represent a

particular environment characterized by their discrete
d.
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nature in time and space, as well as by their daily and

seasonal variability in temperature, oxygen concentra-

tion and salinity (Newell, 1970; Stephenson and

Stephenson, 1972; Truchot and Duhamel-Jouve, 1980;

Metaxas and Scheibling, 1993; Horn et al., 1999). These

variations, especially in temperature, depend on a pool’s

localization along the intertidal vertical gradient, which

determines the length of time that a pool remains

isolated from the subtidal system (Gibson, 1982; Horn

et al., 1999). On the other hand, the abundance

and quality of food available for mobile predators

such as fishes also varies along a vertical gradient

in the intertidal zone (Raffaelli and Hawkins, 1986;

Metaxas and Scheibling, 1993). Green algae (e.g., Ulva

sp. and Enteromorpha sp.) usually dominate the

mid to high sectors of intertidal habitats, while brown

algae and corallines are dominant on the lower

sectors of the intertidal zone (Metaxas and Scheibling,

1993). Further, species richness and abundance of

invertebrates decreases towards the higher sectors

of rocky intertidal areas (Raffaelli and Hawkins,

1986).

Assemblages of intertidal fishes are composed of

resident and transitory species, which possess highly

contrasting life histories (Horn and Gibson, 1999).

Resident species inhabit the intertidal zone along their

entire post-plancktonic lives (e.g. Blenniidae), while

transient species (e.g. Kyphosidae) do so only during

juvenile or early developmental stages; later completing

their life cycles in shallow subtidal habitats (Horn and

Gibson, 1988). In contrast to resident species, transitory

species have been reported to occupy those rockpools

most distant from the subtidal zone, remaining isolated

from it for a number of tidal cycles (Thompson and

Lehner, 1976). Consequently, these species would be

exposed to highly variable physical habitat conditions as

well as that of the abundance and quality of food

available.

We assess if food quality modifies the thermal

preferences of juvenile individuals of the fish species

Girella laevifrons (Kyphosidae), which is the most

abundant transitory fish species inhabiting high inter-

tidal rockpools along the coast of Chile (Pulgar et al.,

1999). This species lives in tidepools for a period of ca. 2

years, and then migrates to shallow subtidal areas,

where it completes its life cycle (Stepien, 1990; Varas and

Ojeda, 1990). G. laevifrons fed on algae and small

invertebrates, but macroalgae is the preferred dietary

item, being a 56% of total food items while bivalves

represent a 12% of total food items Muñoz and Ojeda,

1997). Because ectotherms require an external heat

source for digestion and nutrient processing (Cossins

and Bowler, 1987), we hypothesized that an interaction

between dietary quality and ambient temperature

modifies the thermal preferences of the intertidal fish

G. laevifrons.
2. Materials and methods

2.1. Sampling and acclimation

Fish were collected from eight tide pools at the

locality of Isla Negra in central Chile (33�260S,

71�410W). Seawater temperature of each pool was

recorded on the surface, bottom, and under boulders.

Depth of tidepools ranged from 20 to 90 cm. All these

measurements were taken during low tide at ca. mid-

day. Eighty juvenile G. laevifrons (4–6 cmLt) specimens

were captured with hand nets after the application of the

anaesthetic MS-222 to the tidepools. All sampled fish

were immediately deposited in a 20 l cooler containing

fresh seawater, and transported to the laboratory. Fish

were later separated into two groups of 30 individuals

each, and maintained for 40 days at 14�C and under the

same conditions, of constant aeration, water recycling,

and a 12:12 h photoperiod. The two groups were fed

different foods. The first group received a diet of green

algae consisting of Enteromorpha sp. and Ulva sp., while

the second was fed fresh bivalves Perumitylus sp.
3. Dietary energy content

The energetic content of each of the two diets was

determined using a computerized Parr 1261 bomb

calorimeter. Two replicates were determined to be ash

free and were considered reliable when the difference

between two measurements was less than 1%. Analysis

of energetic content indicated that fresh bivalves

contained 21.9 kJ/g and green algae contained 11.7 kJ/g.
4. Experimental thermal gradient

Temperature selectivity (Ts) experiments were con-

ducted in a vertical aquarium (30� 30� 60 cm3) con-

taining a thermal gradient. The depth of the aquarium

tank used was within the depth range of the intertidal

pools from where fish were collected. This aquarium was

split into six 10 cm cells, separated by a perforated

acrylic sheet, which contained four 7 cm2 holes each,

allowing fish free passage among the different cells of the

aquarium. The bottom of the aquarium was immersed

into a thermoregulated bath with a temperature of

nearly 10�C. A heater set to 31�C was positioned on the

superior portion of the aquarium. This way, after 2 h, an

experimental system with a well-established water

temperature (Tw) gradient was obtained, which ranged

between 10�C on the bottom and 30�C on the top

(Table 1). Prior to the commencement of the Ts

experiments, Tw of each of the cells along the thermal

gradient was monitored through a digital thermo-

meter connected to Cu-constantan thermocouples. The
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Table 1

Average temperature (�C)71 SD, registered at each cell in the

thermal gradient

Cell Average temperature (�C)

6 30.971.22 (top)

5 25.371.11

4 18.672.56

3 16.471.76

2 12.971.30

1 10.370.3 (bottom)

Cells are shown from upper-most cell (cell 6) to lower-most

(cell 1) with 22 replicates (11 G. laevifrons of each experimental

group.
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stability of the experimental system was tested by

registering Tw of each cell immediately before depositing

a fish specimen and immediately after registering

the amount of time that the specimen stayed within

each cell.
5. Thermal selectivity experiments

Eleven G. laevifrons individuals of each group were

placed, one per trial, on the upper side of the thermal

gradient (Table 1). Each fish specimen was maintained

within the experimental system for a total period of

40min. Previous experience indicated that G. laevifrons

takes only 20min to explore and recognize the complete

thermal gradient (Pulgar et al., 1999). During the

following 20min the total amount of time that each fish

stayed within each cell of the thermal gradient was

registered using a stop-watch. After each trial, water was

renewed and aerated for 20min. Finally, control trials

were conducted with the aquarium at a constant Tw of

15�C and using five individuals (one per run) that had

been maintained under each quality diet. Dissolved

oxygen concentration was measured in each cell using a

CHEMests colorimetric kit K-7510, and ranged from

7mgO2/l in cell 6 to 8mgO2/l in cell 1.
6. Data analyses

In order to simplify the statistical analysis for an

assessment of fish Ts as a function of diet, thermal cells

were grouped into high, intermediate, and low tempera-

ture cells. This way, the time spent by fish in the two

high temperature cells (cells 5–6), two intermediate

temperature cells (cells 3–4), and two low temperature

cells (cells 1–2) were summed. Thus, we obtained (1) the

type of diet with two levels, algae and bivalves, (2) water

gradient temperature with three levels, high, medium,

and low, and (3) the presence or absence of the thermal

gradient, with two levels.
Thermal selectivity of each of the two groups fed on

different quality diets was tested via one-way repeated

measurements ANOVA (Siegel and Castellan, 1988)

applied on the time spent by the fish at each thermal

sector of the aquarium (low, medium, and high

temperature sectors). This analysis allow us to determine

selectivity within each experimental group. Then,

differences in the amount of time spent at each

temperature were tested via a three-way repeated

measures ANOVA, with two dietary levels (algae

and bivalves), temperature gradient with two levels

(absence and presence), and water temperature with

three levels (low, medium, and high). This analysis allow

us to test for differences among experimental groups.

Finally, we used a repeated measurement test because

fish were continuously recorded during 20min and

consequently they visited different areas in the experi-

mental set-up. Thus, we recorded the same individual

through time.
7. Results

Mean Tw of tidepools varied from 18.5�C (70.6 SD)

under boulders to 20.5�C (70.6 SD) on the bottom, and

22.0�C (70.3 SD) on the surface. Water temperature

within each cell of the experimental thermal gradient is

shown in Table 1. Temperature ranged between 11�C

and 28�C.

The analysis of the amount of time that individuals

spent at high, intermediate, and low temperature cells

indicated that specimens fed on fresh bivalves spent a

significantly greater amount of time in intermediate

temperature cells (16–19�C) than at high and low

temperatures (Anova F(2,20)=14.57, Po0:001; a poster-

iori Scheffe test Po0:05; Fig. 1). On the other hand, fish
fed on algae spent a significantly greater amount of time

in low temperature cells (10–13�C) than at intermediate

and high Tw’s (Anova F(2,20)=38.6, Po0:001; a poster-

iori Scheffe test, Po0:05; Fig. 1). This way, fish fed on

bivalves showed a clear preference for intermediate

temperatures while those fed on algae selected cells with

the lowest water temperatures (Fig. 1). In contrast,

neither fish fed on bivalves nor those fed on algae

showed preferences for any of the different sectors

of the aquarium in control trials. (Fish fed on bi-

valves: Anova F(2,8)=0.26, Po0:77: Fish fed on

algae: Anova F(2,8)=3.1, Po0:09; Fig. 2). Fish subjected
to the experimental thermal gradient showed clear

preferences for different sectors of the experi-

ment gradient (Fig. 1) while control fish (not subjected

to the thermal gradient) did not show signifi-

cant preferences for any of the sectors within the

aquarium (Anova F(2,56)=11.32; Po0:0001; Figs. 1

and 2, Table 2).
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Fig. 1. Mean amount of time (s)71 SE that fishes fed on algae

(black barr) and on fresh bivalves (white barr) stayed at low,

intermediate, and high temperature cells of the thermal

gradient. Total duration of each trial (fish) was 60min, and

11 replicates were conducted per experimental group.
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Fig. 2. Mean amount of time (s)71 SE that fishes fed on algae

(black barr) and on fresh bivalves (white barr) stayed within the

various cells of the aquarium during control trials (no thermal

gradient). Total duration of each trial (fish) was 60min, and 11

replicates were conducted per experimental group.

Table 2

Results of a three-way analysis of variance on time spent by fishes fe

Factor Df factor C

Diet 1

Gradient/control 1

Temperature 2 15

Diet�gradient/control 1

Diet�temperature 2 45

Gradient/control�temperature 2 47

Diet�gradient/control�temperature 2 57

Diet=algae, invertebrates; gradient/control=presence or absence of
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8. Discussion

The main three factors that determine feeding

ates are body size, food availability and temperature

(Kooijman, 2000). Optimality theory assumes that the

overall fitness of an animal increases as a function of net

rate of energy intake, having been utilized to understand

how individuals select particular environmental condi-

tions as a function of the flexibility of their physiological

responses and the environmental variability (Krebs and

Davis, 1978; Dent and Lutterschmidt, 2003). This

approach has been used to propose unified energy

budget models combining heat and food energy budgets

through their effects on body temperature and metabo-

lism (Spotila and Standora, 1985). Environmental

temperature has been shown to have direct effects on

the digestive processes and energetic costs of ectotherms

(Cossins and Bowler, 1987). Numerous studies have

demonstrated that lizards, snakes, and turtles select

environmental temperatures where the detection and

capture of prey, reproduction, and digestive processes

are most efficient (Dawson, 1975; Spotila and Standora,

1985; Tracy and Christian, 1986; Marken Lichtenbelt

and Wesselingh, 1993; Marken Lichtenbelt, 1993; Ayres

and Shine, 1997; Bozinovic and Rosenmann, 1988).

In this study, we evaluated the effect of diet quality on

Ts of the intertidal fish G. laevifrons. Our results indicate

that food quality (algae vs. bivalves) modifies thermal

preferences of this species, as fish fed on algae selected

low temperatures (10–13�C), while those fed on bivalves

preferred more intermediate temperatures (16–19�C)

(Fig. 1). Even though acclimation and photoperiod can

modify the preferred temperature in fishes (Kelsch and

Neill, 1990; Bridges, 1993), variations in the temperature

selectivity observed among treatments are related to

differences in food quality because all specimens used in

this study were maintained under the same experimental

conditions (14�C and photoperiod (12:12) for 40 days).

The performance and fitness of ectotherms are

profoundly affected by body temperature (Huey and

Kingsolver, 1993). This way, energy conservation

among ectotherms can be achieved via behavioral
d on two diets in each cell of thermal gradient

M factor Df error F P

417 28 0.43 0.52

435 28 0.47 0.51

9 617 56 29.9 0.00001

430 28 0.44 0.51

9 092 56 16.9 0.00001

7 049 56 9.38 0.0003

5 152 56 11.31 0.0001

the thermal gradient; Temperature=low, medium, high.
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mechanisms that result in a reduction in body tempera-

ture (Sibly and Calow, 1986; Cossins and Bowler, 1987;

Sogard and Olla, 1996). Fry sockeye salmon Oncor-

hynchus nerka save considerable energy by daily vertical

migration; feeding at the surface at dawn and dusk and

digesting food and processing chemical energy at lower

temperatures in deep water during the day (Brett et al.,

1983). On the northern coasts of California, survival and

growth of juvenile coho salmon O. kisutch under natural

conditions, where food is limiting, may be possible only

in a narrower range of temperatures than can be

tolerated under artificial conditions (Hartwell et al.,

2001). Streams with high temperatures may not be

adequate as rearing habitats for coho salmon in the

absence of extremely high food availability, which might

mitigate elevated metabolic rates of fish in these habitats

(Welsh et al., 2001). Our results indicate that fish

subjected to a low quality diet (algae), selected

the lowest temperatures of the experimental system

(10–13�C), suggesting that an energy conservation

strategy was being adopted by these fishes. On the other

hand, animals fed on a high quality diet (bivalves),

selected intermediate temperatures of the thermal

gradient (16–19�C), a response that suggests that these

fish were selecting conditions that could bring about an

optimization of their digestive processes, and an increase

in their energetic returns (Fig. 1).

Temperature has been shown to play a very important

role in determining both vertical distribution and

survival of intertidal fishes (Bridges, 1993); in fact,

variations in the abundance of intertidal fishes have been

indicated to be mainly associated with changes in water

temperature and the search of specific microhabitats

(Horn and Gibson, 1988; Bridges, 1993; Metaxas and

Scheibling, 1993). A bioenergetic model developed by

Crowder and Magnuson (1983) evaluates fish foraging

behavior in a heterogeneous temperature environment.

The model suggests that fish areas of foraging depends

on the interaction between the presence of food and the

temperature of the habitat. This way, fish would

optimize the use of habitat resources by making choices

among the various spatial components according to the

food–temperature conditions in which they find them-

selves. In this sense Dent and Lutterschmidt (2003)

demonstrated the diversity of physiological responses in

two fish species, Lepomis macrocirrhus y L. megalotis, to

different physical and food conditions of the colonized

environment. In our study, fish selected temperatures

differentially (Fig. 1). An intertidal fish species such as

G. laevifrons that is exposed to an environment that is

heterogeneous in terms of temperature conditions, as are

intertidal rockpools (Truchot and Duhamel-Jouve,

1980; Metaxas and Scheibling, 1993) and variable in

food quality and availability, as observed along the

intertidal gradient (Raffaelli and Hawkins, 1986), would

be expected to be spatially segregated within the
intertidal zone. Hern!andez et al. (2002) indicated that

the largest-sized specimens of Graus nigra (Kyphosidae)

reached their metabolic maximum response at lower

temperatures compared to small fishes. In the intertidal

zone, the largest-sized individuals of G. nigra primarily

occupy tidepools located in the lower sectors (habitats

with the greatest richness and abundance of prey and

that is least variable in terms of thermal conditions). In

summary, the thermoregulatory behavior of G. laevi-

frons depends on the interaction between environmental

temperature and the quality of food available, an

interaction that should be taken into account when

evaluating fish distributional patterns as a function of

environmental temperature.
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