Introducción al Álgebra Lineal

Año 2014

Práctica 1: Vectores

Ejercicio 1. Sean A = (2, 4) y B = (5, 3).

- (a) Hallar un vector equivalente al vector \overrightarrow{AB} con origen en (0,0).
- (b) Hallar un vector equivalente al vector \overrightarrow{AB} con origen en (-1,1).
- (c) Hallar un vector equivalente al vector \overrightarrow{AB} con extremo en (0,2).
- (d) Hallar un vector equivalente al vector \overrightarrow{AB} con extremo en (3, -1).
- (e) Graficar el vector \overrightarrow{AB} y todos los vectores hallados en los items anteriores en un mismo sistema de ejes cartesianos.

Ejercicio 2. En cada uno de los siguientes casos hallar un punto Q tal que el vector \overrightarrow{AB} sea equivalente al vector \overrightarrow{PQ} .

- (a) A = (1,2), B = (0,2), P = (3,1).
- (b) A = (1, 2), B = (-1, 3), P = (4, 4).
- (c) A = (1,3), B = (1,2), P = (0,2).
- (d) A = (0,0), B = (3,2), P = (1,-1).

Ejercicio 3. Sean A = (3, 2), B = (-1, 5) v C = (2, 2).

- (a) Calcular A + B, A + C, A C v B C.
- (b) Graficar los vectores A, C, A + C y A C en un mismo sistema de ejes cartesianos.

Ejercicio 4. Sean A = (3, 1), B = (1, 2).

- (a) Calcular A + B, 2A + B, 3A + B, -1A + B, -2A + 2B
- (b) Graficar los vectores A, B, 2A, 3A, -1A, 2B, A+B, 2A+B, 3A+B, -1A+B, -2A+2B en un mismo sistema de ejes cartesianos.

Ejercicio 5. En cada uno de los siguientes items hallar, si es posible, $x \in y$ tales que

- (a) (x, x + 1) = (3, y)
- (b) (2x + y, x 2y) = (1,3)
- (c) (2x + y, x 2y) = (2, 4)

Ejercicio 6. En cada uno de los siguientes items hallar, si es posible, x, y y z tales que

(a)
$$(1,2,3) = x(2,4,3) + y(-1,2,12) + z(0,0,3)$$

(b)
$$(1,5,4) = x(1,0,0) + y(0,1,0) + z(0,0,1)$$

(c)
$$(a,b,c) = x(1,0,0) + y(0,1,0) + z(0,0,1)$$

Ejercicio 7. Calcular la longitud de los vectores (3,0); (2,1); (-3,-4); (3,3,3); (-2,3,0); (2,3,6).

Ejercicio 8. Graficar en el plano el conjunto $S = \{(x, y) \in \mathbb{R}^2 / ||(x, y)|| = 1\}.$

Ejercicio 9. En cada uno de los siguientes items hallar la distancia entre los puntos A y B.

- (a) A = (1, -3); B = (4, 1)
- (b) A = (4, -2, 6); B = (3, -4, 4)
- (c) A = (1, -3, 0); B = (3, -2, 3)

Ejercicio 10.

- (a) Sea A = (1, k, 0). Hallar todos los valores de $k \in \mathbb{R}$ tales que ||A|| = 2.
- (b) Sea B = k(2,2,1). Hallar todos los valores de $k \in \mathbb{R}$ tales que ||B|| = 1.
- (c) Sean P = (1, 1, 1) y Q = (k, -k, 2). Hallar todos los valores de $k \in \mathbb{R}$ tales que d(P, Q) = 2.

Ejercicio 11. Sean v = (2, -1, 1); w = (1, 0, 2) y u = (-2, -2, 1). Calcular.

(a)
$$||v + w||$$

$$(c) \|3v + 3w\|$$

$$(e) \quad \left\| \frac{1}{\|w\|} w \right\|$$

$$(b) \|v\| + \|w\|$$

$$(d) \|v - u\|$$

(f)
$$||v + w - u||$$

Ejercicio 12. En cada uno de los siguientes items encontrar los dos vectores unitarios que tienen la misma dirección que el vector A.

- (a) A = (3, -1)
- (b) A = (2, -3, 6)
- (c) A = (0, 3, 0)
- (d) A = (a, b, c), donde $a, b, c \in \mathbb{R}$ y $(a, b, c) \neq (0, 0, 0)$

Ejercicio 13. Sean A = (1, 2, 1) y B = (1, 0, -1). Hallar un vector de longitud 5, de origen (0, 0, 0) y que tenga la misma dirección y sentido que el vector \overrightarrow{AB} .

Ejercicio 14. Sean A = (1,2); B = (-1,-2); C = (-2,1); D = (1,0); E = (0,0) y F = (x,y). Calcular:

$$(a) \langle A, B \rangle$$

$$(d) \langle A, E \rangle$$

$$(q) \langle D-C,A\rangle$$

(b)
$$\langle B, A \rangle$$

(e)
$$\langle B, C \rangle$$

$$(h) \langle F, A \rangle$$

$$(c) \langle A, C \rangle$$

(f)
$$\langle B, C + D \rangle$$

(i)
$$\langle F, E \rangle$$

Ejercicio 15. Sean A = (1, 1, 1); B = (1, -1, 0); C = (2, -1, -1); D = (2, 3, -1) y E = (-1, 0, 2). Calcular:

(a)
$$\langle A, B \rangle$$

(c)
$$\langle A, B + C \rangle$$

$$(e) \langle A, D \rangle$$

(b)
$$\langle A, C \rangle$$

(d)
$$\langle A, 2B - 3C \rangle$$

(f)
$$\langle D, A + E \rangle$$

Ejercicio 16. Encontrar y representar en el plano todos los vectores (x, y) ortogonales a:

$$(a) A = (1,2)$$

$$(c)$$
 $e_1 = (1,0)$

(b)
$$B = (-2,3)$$

$$(d) e_2 = (0,1)$$

Ejercicio 17. Encontrar todos los vectores (x, y, z) de \mathbb{R}^3 ortogonales a:

(a)
$$e_1 = (1,0,0)$$

$$(d)$$
 e_1 y e_2

(b)
$$e_2 = (0, 1, 0)$$

$$(e) e_1 y e_3$$

(c)
$$e_3 = (0, 0, 1)$$

(f)
$$e_2 y e_3$$

Ejercicio 18. Sean A=(1,-2) y B=(3,4). Hallar todos los vectores (x,y) de \mathbb{R}^2 tales que $\langle A,(x,y)\rangle=\langle A,B\rangle$. Graficar.

Ejercicio 19.

- (a) Encontrar un vector ortogonal a (1,1) de longitud 8. ¿Es único?
- (b) Encontrar todos los vectores ortogonales a (0,0,1) de longitud 1. Dibujarlos.
- (c) Sean A=(1,2,-1) y B=(2,0,1). Encontrar un vector de \mathbb{R}^3 que sea ortogonal a A y a B.

Ejercicio 20. En cada uno de los siguientes items hallar el ángulo que forman los vectores A y B

(a)
$$A = (1,1), B = (-1,0)$$

(c)
$$A = (1, \sqrt{3}), B = (-2, 2\sqrt{3})$$

(b)
$$A = (1,2), B = (-2,1)$$

(d)
$$A = (2, 1, 1), B = (1, -1, 2)$$

Ejercicio 21. Hallar todos los vectores de \mathbb{R}^2 de longitud 3 que forman un ángulo de $\frac{\pi}{3}$ con el vector $(-1, \sqrt{3})$.

Ejercicio 22. Hallar todos los vectores de \mathbb{R}^2 de longitud 4 que forman un ángulo de $\frac{2\pi}{3}$ con el vector $(-1,\sqrt{3})$.

Ejercicio 23.

- (a) Sea A=(1,1). Hallar todos los $B\in\mathbb{R}^2$ tal que el ángulo entre A y B sea $\frac{\pi}{4}$ y $\|B\|=1$.
- (b) Sea A=(-1,0). Hallar todos los $B\in\mathbb{R}^2$ tal que el ángulo entre A y B sea $\frac{\pi}{3}$ y $\|B\|=2$.

Ejercicio 24. Sea $n \in \mathbb{N}$ y sea $A \in \mathbb{R}^n$ un vector de norma 3. Sea $B \in \mathbb{R}^n$ un vector que forma un ángulo de 45° con A y tal que A - B es ortogonal a A. Calcular ||B||.

Ejercicio 25. Sea $n \in \mathbb{N}$ y sea $A \in \mathbb{R}^n$ un vector de norma 5. Sea $B \in \mathbb{R}^n$ un vector que forma un ángulo de 120° con A y tal que A + 5B es ortogonal a A. Calcular ||B||.

Ejercicio 26. Sea $n \in \mathbb{N}$ y sean $A, B \in \mathbb{R}^n$. Demostrar que

- (a) ||A B|| = ||A + B|| si y sólo si $\langle A, B \rangle = 0$.
- (b) $||A + B||^2 = ||A||^2 + ||B||^2$ si y sólo si $\langle A, B \rangle = 0$.

Interpretar ambas proposiciones geométricamente.

Ejercicio 27. Sean A = (1, 2, 2), B = (-1, 1, 2) y C = (-2, 2, -1). Calcular:

(a) $A \times B$

(d) $B \times C$

 $(g) \langle A \times B, C \rangle$

(b) $B \times A$

- (e) $(A \times B) \times C$
- $(h) \langle A \times B, A \rangle$

(c) $A \times C$

- (f) $A \times (B \times C)$
- (i) $\langle A \times B, B \rangle$

Ejercicio 28. Hallar un vector v de norma 1 que sea ortogonal a A = (1, 1, 1) y a B = (1, 1, -1).

Ejercicio 29. Sean A = (2, -1, -2) y B = (-3, 2, 4). Hallar un vector de \mathbb{R}^3 que sea ortogonal a A y a B y que tenga longitud 5. ¿Es único?

Ejercicio 30. Sea A = (2, 1, 5).

- (a) Determinar si existe $B \in \mathbb{R}^3$ tal que $A \times B = (2, 1, -1)$.
- (b) Determinar si existe $B \in \mathbb{R}^3$ tal que $A \times B = (3, 1, -1)$.
- (c) Para cada uno de los items anteriores responder las siguientes preguntas.
 - 1) En caso de existir, ¿es única la solución?
 - 2) ¿Se puede determinar la existencia o no existencia de B sin calcularlo? ¿Cómo?

Ejercicio 31. Sea A = (1, -2, 1).

- (a) Hallar todos los $B \in \mathbb{R}^3$ tales que $A \times B = (-2, 1, 4)$.
- (b) ¿Cuáles de los vectores hallados en el ítem anterior tienen longitud $\sqrt{5}$?

Ejercicio 32. Sean A = (1,0,1) y C = (-2,1,2). Determinar todos los $B \in \mathbb{R}^3$ tales que $A \times B = C$ y $\langle A, B \rangle = 1$.

Ejercicio 33. Sean A=(2,2,0) y B=(x,y,z). Determinar una condición necesaria y suficiente sobre x,y,z para que $A\times B=0$

Ejercicio 34.

- (a) Sean A = (2, 1, 0) y B = (1, 3, 1). Calcular el área del paralelogramo de vértices O, A, B y A + B.
- (b) Sean A = (1, 1, 0), B = (1, 3, 2) y C = (2, -1, 1). Calcular el área del paralelogramo que tiene por dos de sus lados a los segmentos \overline{AB} y \overline{AC} .
- (c) Sean A = (1,1) y B = (3,0). Calcular el área del paralelogramo de vértices O, A, B y A + B. Graficar.
- (d) Sean A = (2, -1), B = (1, 3) y C = (3, -1). Calcular el área del paralelogramo que tiene por dos de sus lados a los segmentos \overline{AB} y \overline{AC} . Graficar.
- (e) Sean A = (2, -1), B = (1, 3) y C = (3, -1). Calcular el área del triángulo de vértices A, B y C. Graficar.
- (f) Calcular el área del triángulo de vértices A = (1, 3, -2), B = (1, 5, 0) y C = (1, 1, -2).

Ejercicio 35.

- (a) Encontrar una ecuación paramétrica de la recta que pasa por el punto (1,3,-1) y tiene dirección (1,-2,2).
- (b) Encontrar una ecuación paramétrica de la recta que pasa por los puntos (1,1) y (2,3).
- (c) Encontrar una ecuación paramétrica de la recta que pasa por el origen y es paralela a la recta que contiene a los puntos A = (2, -2, 1) y B = (-3, 2, 1).
- (d) Encontrar ecuaciones paramétricas de dos rectas distintas L_1 y L_2 que pasen por (3,2,-1) y sean perpendiculares a la recta de ecuación: X = t(2,2,-2) + (1,0,1), $t \in \mathbb{R}$.

Ejercicio 36. Encontrar la intersección de los siguientes pares de rectas.

- (a) $L_1: X = t(2, -2, 1) + (3, 0, 2)$, $t \in \mathbb{R}$ y $L_2: X = t(2, 1, -1) + (-1, 1, 2)$, $t \in \mathbb{R}$.
- (b) $L_1: X = t(2,2,2) + (1,0,0)$, $t \in \mathbb{R}$, $y L_2: X = t(-1,-1,-1) + (0,-1,-1)$, $t \in \mathbb{R}$.
- (c) $L_1: X = t(1,3,1) + (0,-1,2)$, $t \in \mathbb{R}$ y $L_2: X = t(2,-1,0) + (1,1,2)$, $t \in \mathbb{R}$.

Ejercicio 37.

- (a) Sean u = (2,3), v = (1,1) y w = (3,-2). Hallar $p_v(w), p_u(w)$ y $p_v(u)$.
- (b) Sean u = (2, 1, 1), v = (0, -1, 3) y w = (2, -2, 0). Hallar $p_v(w), p_u(w)$ y $p_v(u)$.

Ejercicio 38. Sean $v, w \in \mathbb{R}^n$ con $v \neq 0$. Demostrar que $w - p_v(w)$ es perpendicular a v.

Ejercicio 39. Sea L la recta de ecuación paramétrica $X = t \cdot (2, -1) + (1, -3)$, $t \in \mathbb{R}$ y sea P = (-4, 1).

- (a) Hallar las coordenadas del punto de la recta L que se encuentra a menor distancia de P.
- (b) Calcular d(P, L).

Ejercicio 40. En cada uno de los siguientes items, hallar una ecuación del plano perpendicular al vector N que contiene al punto P.

- (a) N = (1, 2, -1); P = (5, 3, 3).
- (b) N = (1, 1, -1); P = (2, -5, -3).
- (c) N = (0, -1, 2); P = (1, 1, 1).

Ejercicio 41. En cada uno de los siguientes items, hallar una ecuación del plano que contiene a los puntos A, B y C.

- (a) A = (1, 1, 0); B = (2, 3, 0); C = (-1, -2, 0).
- (b) A = (1,0,0); B = (0,1,0); C = (0,0,1).
- (c) A = (2, -1, 3); B = (2, 1, 1); C = (2, 3, 2).

Ejercicio 42.

- (a) Hallar una ecuación del plano de \mathbb{R}^3 que contiene a los ejes x e y.
- (b) Hallar una ecuación del plano que pasa por el punto (1,1,-2) y que es paralelo al plano del item anterior.

Ejercicio 43. Sea Π el plano de \mathbb{R}^3 descripto por la ecuación x+y-2z=2.

- (a) Hallar un vector N, normal a Π .
- (b) Hallar dos puntos distintos de Π .
- (c) Hallar un plano Π_1 paralelo a Π que pase por el origen.
- (d) Hallar un plano Π_2 paralelo a Π que pase por el punto P=(1,1,-2).

Ejercicio 44. Sea L la recta de \mathbb{R}^3 de ecuación paramétrica X=t(1,-1,3)+(0,2,1), $t\in\mathbb{R}$ y sea A=(1,2,-3).

- (a) Hallar una ecuación del plano Π que contiene a la recta L y al punto A.
- (b) Hallar una ecuación de la recta L' que es perpendicular a Π y que pasa por el punto A.
- (c) Calcular $L \cap \Pi \setminus L' \cap \Pi$.

Ejercicio 45. Sea Π el plano de \mathbb{R}^3 de ecuación 2x - y + 4z = 6.

- (a) Encontrar una ecuación de la recta L perpendicular al plano Π y que pasa por el punto R=(-1,3,2).
- (b) Sea Q el punto de intersección de la recta L con el plano Π . Hallar las coordenadas de Q.
- (c) Calcular ||R Q|| y $d(R, \Pi)$.

Ejercicio 46.

- (a) Sean L_1 y L_2 las rectas de \mathbb{R}^3 descriptas por las ecuaciones $L_1: X = t(1,2,0) + (1,1,1)$, $t \in \mathbb{R}$ y $L_2: X = t(-1,0,1) + (1,2,3)$, $t \in \mathbb{R}$. Hallar una ecuación de un plano Π que contenga a la recta L_1 y tal que la recta L_2 es paralela a Π .
- (b) Sean L_3 y L_4 las rectas de \mathbb{R}^3 descriptas por las ecuaciones L_3 : X = t(1, 2, -1) + (3, 0, 0), $t \in \mathbb{R}$ y L_4 : X = t(-2, -4, 2) + (0, 1, 1), $t \in \mathbb{R}$. Sea Π' el plano que contiene a las rectas L_3 y L_4 . Dar una ecuación del plano Π' .

Ejercicio 47.

- (a) Hallar la distancia entre el punto P=(2,2,1) y el plano de \mathbb{R}^3 que contiene a las rectas L:X=t(1,2,-1)+(1,3,2), $t\in\mathbb{R}$ y L':X=t(2,-1,3)+(3,2,5), $t\in\mathbb{R}$.
- (b) Hallar la distancia entre el punto P = (2,1) y la recta de ecuación x + 2y = 3.

Ejercicio 48. Sea A=(2,-3) y sea L la recta definida por la ecuación X=t(3,4), $t\in\mathbb{R}$.

- (a) Sea L' la recta paralela a L que pasa por el punto A. Hallar la ecuación paramétrica de la recta L'.
- (b) Hallar todos los los puntos de la recta L' que distan 2 de A.
- (c) Sea P el punto de la recta L que está a menor distancia de A. Hallar las coordenadas del punto P.
- (d) Calcular $\langle P-A,(3,4)\rangle$. Interpretar el resultado geométricamente.

Ejercicio 49.

- (a) Describir el conjunto de puntos P de \mathbb{R}^3 tales que d(P,(0,0,0))=1.
- (b) Describir el conjunto de puntos P de \mathbb{R}^3 tales que d(P,(1,1,0))=1.
- (c) Describir el conjunto de puntos P de \mathbb{R}^3 tales que P pertenece al plano de ecuación z=0 y d(P,(1,1,0))=1.
- (d) Describir el conjunto de puntos P de \mathbb{R}^3 tales que d(P,(1,1,0))=1 y P pertenece a la recta de ecuación L:X=t(0,1,0)+(1,0,0), $t\in\mathbb{R}$.

Ejercicio 50. Sea L la recta de ecuación paramétrica X = t(1, -1, 2) + (0, -2, 1), $t \in \mathbb{R}$ y sea P = (2, 4, -3). Hallar las coordenadas del punto de L que se encuentra a menor distancia de P.

Ejercicio 51. Sea P = (2, 1, -1).

- (a) Sea Π el plano de \mathbb{R}^3 de ecuación x+y-z=0. Hallar las coordenadas del punto de Π que se encuentra a menor distancia de P.
- (b) Sea L la recta de ecuación paramétrica X = t(1,3,1) + (2,2,0), $t \in \mathbb{R}$. Hallar las coordenadas del punto de L que se encuentra a menor distancia de P.
- (c) Sea L la recta de ecuación paramétrica X = t(1, -1) + (1, 0), $t \in \mathbb{R}$. Hallar las coordenadas del punto de L que se encuentra a menor distancia del punto (-1, -3).

Ejercicio 52.

- (a) Sea Π el plano de \mathbb{R}^3 de ecuación z=0 y sea L la recta de ecuación X=t(1,1,-2), $t\in\mathbb{R}$. Hallar una recta L' contenida en el plano Π que sea perpendicular a L. Es única?
- (b) Sea Π el plano de \mathbb{R}^3 de ecuación z=0 y sea L la recta de ecuación X=t(0,0,1), $t\in\mathbb{R}$. Hallar una recta L' contenida en el plano Π que sea perpendicular a L. ¿Es única? ¿Cuál es la diferencia con el ítem anterior?

Ejercicio 53. Sea Π el plano de \mathbb{R}^3 de ecuación -x+y+2z=4 y sea L la recta de ecuación paramétrica $X=t(3,0,-1)+(1,3,-4),\ t\in\mathbb{R}$. Hallar la ecuación paramétrica de una recta L' contenida en el plano Π que sea perpendicular a la recta L.

Ejercicio 54. Sea Π el plano de \mathbb{R}^3 de ecuación 3x - 2y + 2z = 6 y sea L la recta de ecuación paramétrica $X = t(2, -1, 1) + (-4, 2, 1), t \in \mathbb{R}$. Hallar la ecuación paramétrica de una recta L' contenida en el plano Π que sea perpendicular a la recta L.

Ejercicio 55. Sea $k \in \mathbb{R}$. Sea L la recta de ecuación paramétrica $X = t(k^2 + 1, k, k + 7)$, $t \in \mathbb{R}$ y sea Π el plano de ecuación x + 2y - 3z = 2. Determinar todos los valores de k para los cuales $L \cap \Pi = \emptyset$.

Ejercicio 56. Sea L la recta de ecuación X=t(2,3,-1) , $t\in\mathbb{R}$ y sea Π el plano de ecuación x+2y=0.

- (a) Hallar todos los puntos de \mathbb{R}^3 que están a distancia $\sqrt{5}$ del plano Π .
- (b) Hallar todos los puntos de la recta L que están a distancia $\sqrt{5}$ del plano Π .

Ejercicio 57. Sea Π el plano de \mathbb{R}^3 de ecuación -2x - y + 2z = 1 y sea L la recta de ecuación paramétrica $X = t(-1, 2, -2) + (-3, 1, 2), t \in \mathbb{R}$. Hallar todos los puntos de la recta L que estén a distancia 4 del plano Π.

Ejercicio 58. Sea Π el plano dado por la ecuación paramétrica

$$\Pi: X = \alpha(0,2,1) + \beta(2,3,0) + (-1,0,1), \alpha, \beta \in \mathbb{R}$$
.

- (a) Hallar las ecuaciones de dos rectas L_1 y L_2 , perpendiculares entre sí, ambas contenidas en Π .
- (b) Hallar la ecuación de una recta L contenida en Π que sea perpendicular a la recta L' definida por la ecuación paramétrica X = t(-2, 3, 1) + (2, 1, 2), $t \in \mathbb{R}$.

Ejercicio 59. Sean Π_1 y Π_2 los planos de \mathbb{R}^3 definidos por las ecuaciones 3x + 2y - 6z = 1 y -3y + 4z = 3 respectivamente.

- (a) Hallar todos los puntos P de \mathbb{R}^3 que verifican $d(P,\Pi_1)=d(P,\Pi_2)$.
- (b) Hallar todos los puntos P de \mathbb{R}^3 que verifican $d(P,\Pi_1)=d(P,\Pi_2)=2$.
- (*)**Ejercicio 60.** Sean A, B, C y D cuatro puntos del plano tales que $\overrightarrow{AC} \parallel \overrightarrow{BD}$. Sea M el punto medio de \overline{AB} y sea N el punto medio de \overline{CD} , probar que $\overrightarrow{MN} \parallel \overrightarrow{AC}$.
- (*)**Ejercicio 61.** Sean A = (2,0) y B = (1,1)
 - (a) Hallar todos los puntos de \mathbb{R}^2 que equidistan de A y B.
 - (b) Hallar $C \in \mathbb{R}^2$ tal que el triángulo $\triangle ABC$ sea equilátero. Es único un tal C?
 - (c) Hallar la ecuación de una recta que pase por B y que forme un angulo de 45° con la recta \overleftrightarrow{AB} .
 - (d) Hallar $D \in \mathbb{R}^2$ tal que el triángulo $\triangle ABD$ sea rectángulo en D e isósceles.