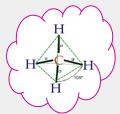
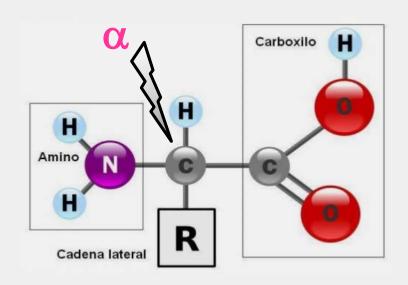
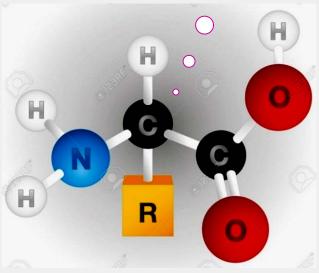

# Aminoácidos y péptidos



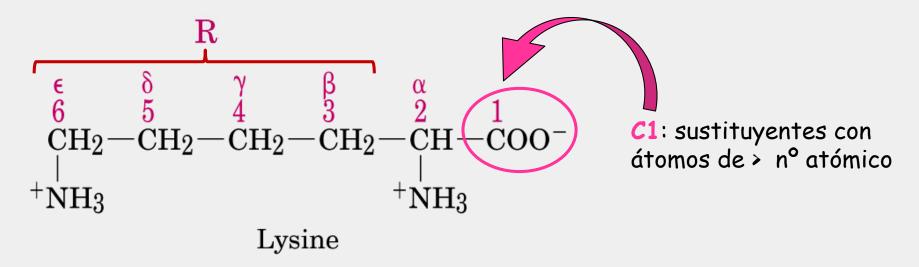
#### Contenido de la clase

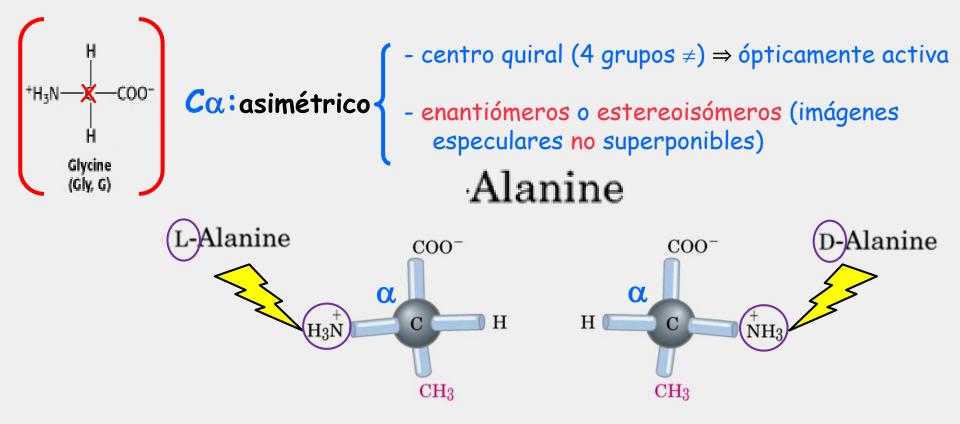

### Aminoácidos:


- Estructura y clasificación según la estructura
- Clasificación según los grupos R
- No convencionales
- Propiedades ácido-base
- Métodos de estudio

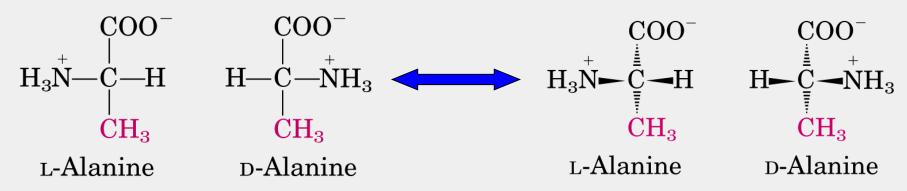

# Péptidos

- Hidrólisis
- Síntesis
- Actividad biológica


## Estructura general de los Aa






## Identificación y numeración de los C

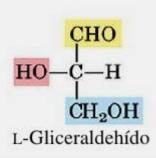


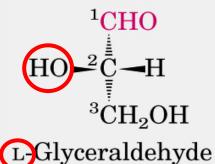


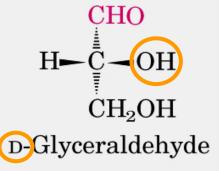
Dos convenciones diferentes de la configuración de los estereoisómeros: D y L

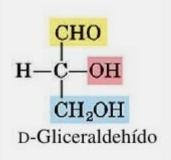


Formulas en proyección Fischer


Formulas en perspectiva


#### Clasificación y nomenclatura de estereoisómeros se basa:


Configuración absoluta de los 4 grupos del C asimétrico


Compuesto de referencia: gliceraldehído

antibióticos)









$$COO^ H_3N$$
 $CH_3$ 
 $CH_3$ 
 $R$ 
 $CH_3$ 

"Muchos L-Aa son dextrorrotatorios"

## Los aminoácidos poseen centros asimétricos

Isómeros ópticos o enantiómeros

**C** asimétricos (quiral) ⇒ isómeros ópticos activos (estereoisómeros)

#### CHO $_{\rm CHO}$ Mirror CH<sub>2</sub>OH $CH_2OH$ D-Glyceraldehyde L-Glyceraldehyde CHO CHO Fischer projection formulas OH H ОН H CHO CHOCH<sub>2</sub>OH CH<sub>2</sub>OH $CH_2OH$ $CH_2OH$ **Ball-and-stick models** D-Glyceraldehyde L-Glyceraldehyde Perspective formulas

#### Enantiómeros: R-5

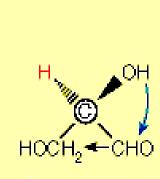
Rotación de luz polarizada a la derecha ⇒ D, disolución de D-gliceraldehído ≃ a varios
 D-aminoácidos

#### Desventajas de nomenclatura L-D:

- Correspondencia no siempre cierta ya que la magnitud y la dirección de la rotación óptica son una función complicada de las estructuras electrónicas que rodea al centro quiral
- No es absoluta ya que se hace en base a un compuesto de referencia (gliceraldehído)

Convenio absoluto: R: rectus y S: sinister (sistema Cahn-Ingold-Prelog).

Designación estereoquímica a cualquier compuesto a partir de la observación de su estructura tridimensional

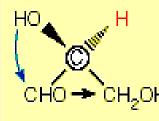

Prioridad de grupos (átomos de > número atómica):

OR > OH > NH<sub>2</sub> > COOH > CHO > CH<sub>2</sub>OH > CH<sub>3</sub> > (H)

#### Prioridad

- H: grupo de < prioridad
- prioridad disminuye en sentido horario  $\Rightarrow R$  (rectus: derecha)
- prioridad disminuye en sentido antihorario  $\Rightarrow$  5 (sinister: izquierda) (sinistrus)

"Difícil de aplicar en moléculas que contienen más de un C asimétrico ⇒ siguen usando L-D"

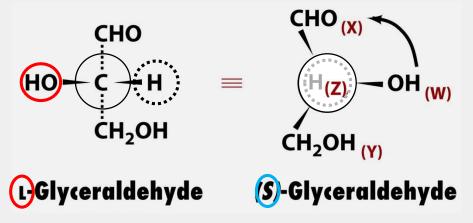



Rotate molecule so group of lowest priority (H) faces away

If priority of remaining groups decreases in clockwise direction, configuration is \$\mathcal{R}\$

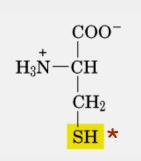
p-Glyceraldehyde

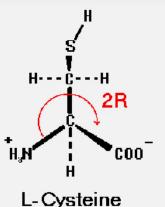
= R-Glyceraldehyde




If priority decreases in counterclockwise direction, configuration is

L-Glyceraldehyde

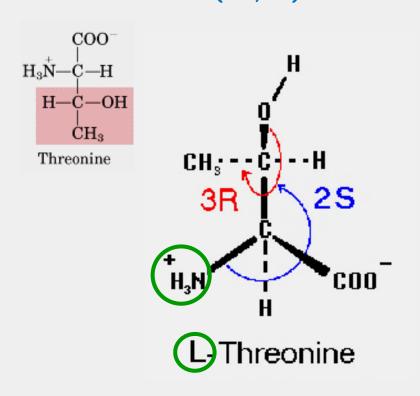

= S-Glyceraldehyde

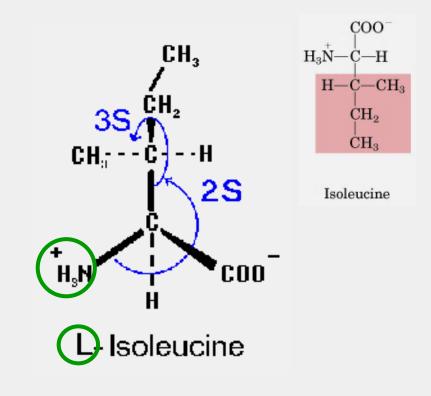

Grupos grandes son ordenados en los puntos de divergencia, por ejemplo:  $-CH_2CH_2SH > -CH_2CH_2OH$ 



· L-Aa son (5)Aa

Excepción: L-cisteína es (R) cisteína




## SH\*, OR > OH > NH2 > COOH > CHO > CH2OH > CH3 > H

L-Treonina: (25,3R) Treonina

L-Isoleucina: (25,35) Isoleucina





#### Contenido de la clase

### Aminoácidos:

- Estructura y clasificación según la estructura
- Clasificación según los grupos R
- No convencionales
- Propiedades ácido-base
- Métodos de estudio

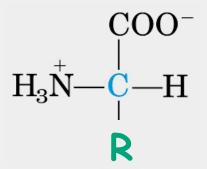
# Péptidos

- Hidrólisis
- Síntesis
- Actividad biológica

# R apolares alifáticos

Glicina

Alanina


Valina

Leucina

Isoleucina

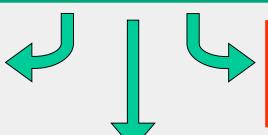
Prolina

Metionina



#### R aromáticos

Fenilalanina Tirosina Triptófano




Clasificación de Aa según el grupo R



## R cargados positivamente

Lisina Arginina Histidina



## R cargados negativamente

Aspartato Glutamato

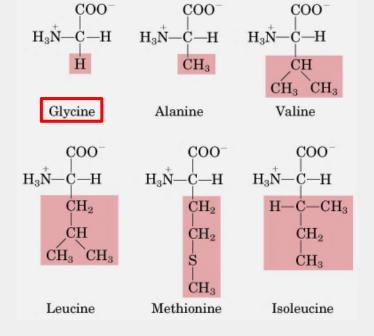
## R polares sin carga

Serina

Treonina

Cisteína?

Asparagina Glutamina


#### Properties and Conventions Associated with the Standard Amino Acids

|                                 |                      |     | p.K <sub>a</sub> values |                        |                                      |       |                   |                                            |
|---------------------------------|----------------------|-----|-------------------------|------------------------|--------------------------------------|-------|-------------------|--------------------------------------------|
| Amino acid                      | Abbreviated<br>names | М,  | р <i>К</i> 1<br>(—соон) | p <i>K</i> 2<br>(—NH³) | p <i>K</i> <sub>R</sub><br>(R group) | pl    | Hydropathy index* | Occurrence<br>in proteins (%) <sup>†</sup> |
| Nonpolar, aliphatic<br>R groups |                      |     |                         |                        |                                      |       |                   |                                            |
| Glycine                         | Gly G                | 75  | 2.34                    | 9.60                   |                                      | 5.97  | -0.4              | 7.2                                        |
| Alanine                         | Ala A                | 89  | 2.34                    | 9.69                   |                                      | 6.01  | 1.8               | 7.8                                        |
| Valine                          | Val V                | 117 | 2.32                    | 9.62                   |                                      | 5.97  | 4.2               | 6.6                                        |
| Leucine                         | Leu L                | 131 | 2.36                    | 9.60                   |                                      | 5.98  | 3.8               | 9.1                                        |
| Isoleucine                      | lle I                | 131 | 2.36                    | 9.68                   |                                      | 6.02  | 4.5               | 5.3                                        |
| Methionine                      | Met M                | 149 | 2.28                    | 9.21                   |                                      | 5.74  | 1.9               | 2.3                                        |
| Aromatic R groups               |                      |     |                         |                        |                                      |       |                   |                                            |
| Phenylalanine                   | Phe F                | 165 | 1.83                    | 9.13                   |                                      | 5.48  | 2.8               | 3.9                                        |
| Tyrosine                        | Tyr Y                | 181 | 2.20                    | 9.11                   | 10.07                                | 5.66  | -1.3              | 3.2                                        |
| Tryptophan                      | Trp W                | 204 | 2.38                    | 9.39                   |                                      | 5.89  | -0.9              | 1.4                                        |
| Polar, uncharged<br>R groups    |                      |     |                         |                        |                                      |       |                   |                                            |
| Serine                          | Ser S                | 105 | 2.21                    | 9.15                   |                                      | 5.68  | -0.8              | 6.8                                        |
| Proline                         | Pro P                | 115 | 1.99                    | 10.96                  |                                      | 6.48  | 1.6               | 5.2                                        |
| Threonine                       | Thr T                | 119 | 2.11                    | 9.62                   |                                      | 5.87  | -0.7              | 5.9                                        |
| Cysteine                        | Cys C                | 121 | 1.96                    | 10.28                  | 8.18                                 | 5.07  | 2.5               | 1.9                                        |
| Asparagine                      | Asn N                | 132 | 2.02                    | 8.80                   |                                      | 5.41  | -3.5              | 4.3                                        |
| Glutamine                       | Gln Q                | 146 | 2.17                    | 9.13                   |                                      | 5.65  | -3.5              | 4.2                                        |
| Positively charged<br>R groups  |                      |     |                         |                        |                                      |       |                   |                                            |
| Lysine                          | Lys K                | 146 | 2.18                    | 8.95                   | 10.53                                | 9.74  | -3.9              | 5.9                                        |
| Histidine                       | His H                | 155 | 1.82                    | 9.17                   | 6.00                                 | 7.59  | -3.2              | 2.3                                        |
| Arginine                        | Arg R                | 174 | 2.17                    | 9.04                   | 12.48                                | 10.76 | -4.5              | 5.1                                        |
| Negatively charged<br>R groups  |                      |     |                         |                        |                                      |       |                   |                                            |
| Aspartate                       | Asp D                | 133 | 1.88                    | 9.60                   | 3.65                                 | 2.77  | -3.5              | 5.3                                        |
| Glutamate                       | Glu E                | 147 | 2.19                    | 9.67                   | 4.25                                 | 3.22  | -3.5              | 6.3                                        |
|                                 |                      |     |                         |                        |                                      |       |                   |                                            |

<sup>\*</sup>A scale combining hydrophobicity and hydrophilicity of R groups; it can be used to measure the tendency of an amino acid to seek an aqueous environment (- values) or a hydrophobic environment (+ values). See Chapter 12. From Kyte, J. & Doolittle, R.F. (1982) J. Mol. Biol. 157, 105 – 132.

<sup>&</sup>lt;sup>†</sup>Average occurrence in over 1150 proteins. From Doolittle, R.F. (1989) Redundancies in protein sequences. In *Prediction of Protein Structure and the Principles of Protein Conformation* (Fasman, G.D., ed) Plenum Press, NY, pp. 599–623.

# No polares alifáticos

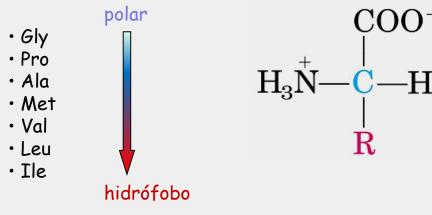


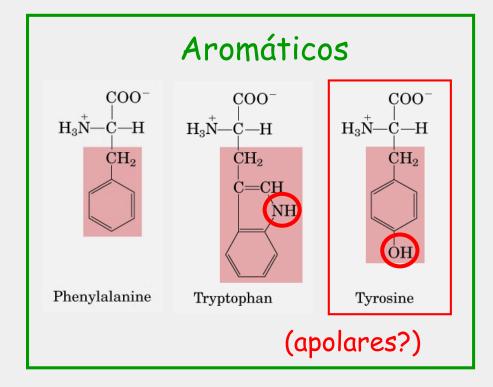
COO

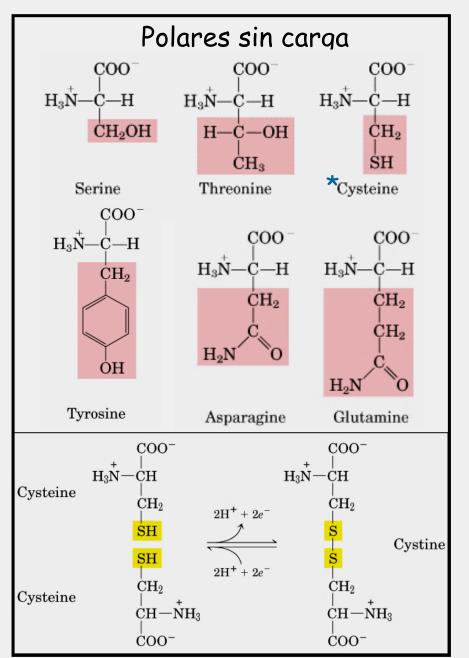
Proline

H<sub>2</sub>N

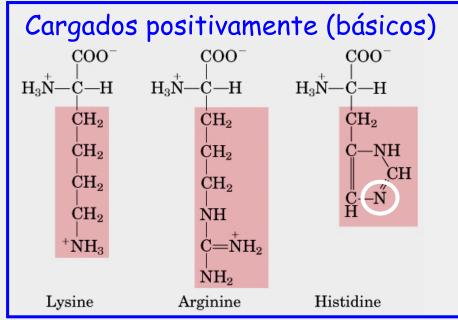
CH 2

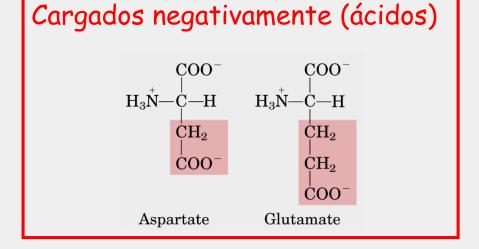




- mínimo impedimento estérico
- flexibilidad estructural

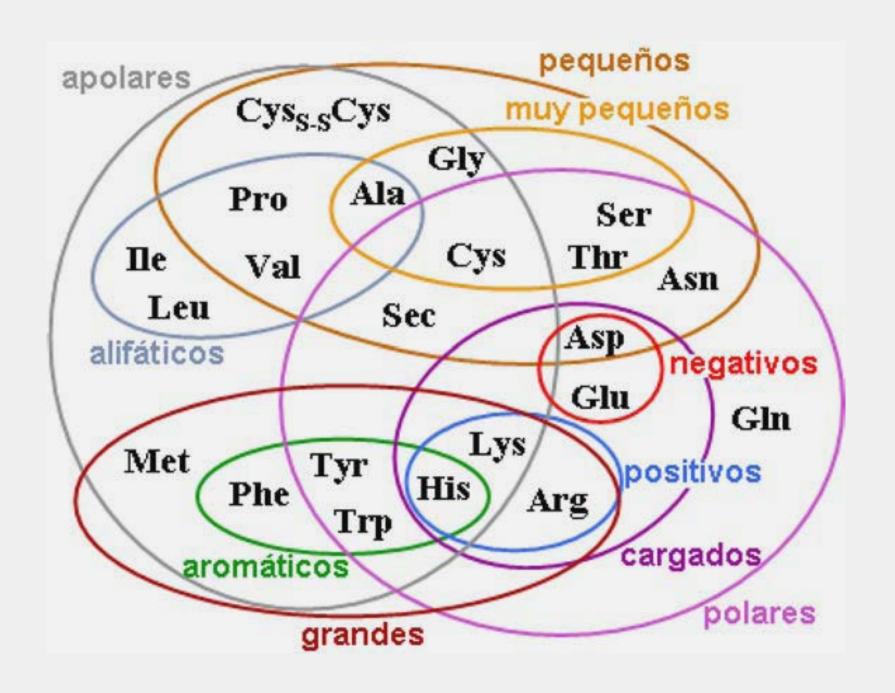

#### Prolina en una proteína:

- baja flexibilidad estructural por grupo imino.


#### Orden de hidrofobicidad






 $<sup>\</sup>begin{matrix} \mathbf{COO^-} \\ \mathbf{H_3N-C-H} \\ \mathbf{R} \end{matrix}$ 

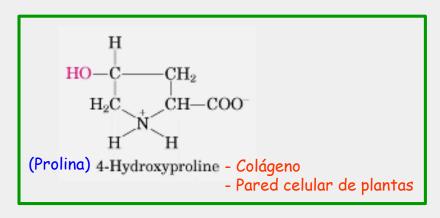




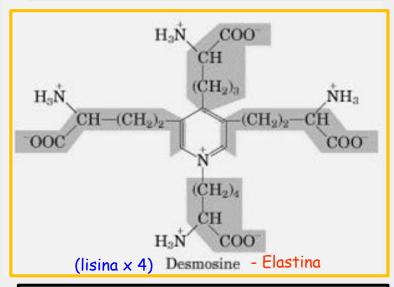
\* apolar alifático?



#### Contenido de la clase


### Aminoácidos:

- Estructura y clasificación según la estructura
- Clasificación según los grupos R
- No convencionales
- Propiedades ácido-base
- Métodos de estudio


# Péptidos

- Hidrólisis
- Síntesis
- Actividad biológica

### Aa NO convencionales: modificados luego de incorporarse a la proteína.



$$H_3\dot{N}-CH_2-CH-CH_2-CH_2-CH-COO$$
OH + NH<sub>3</sub>
(Lisina) 5-Hydroxylysine - Colágeno



#### Aa que NO forman parte de proteínas

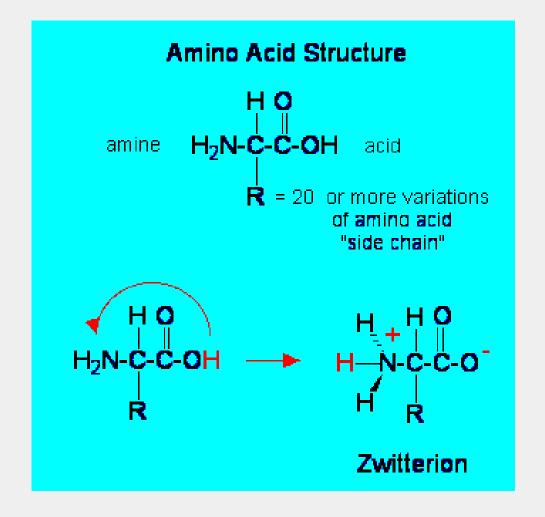
Aa que NO forman parte de proteínas

|                        | Au que No jorniun p                                                                                                | jurie de profesions                                                          |
|------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Name                   | Formula                                                                                                            | Biochemical Source, Function                                                 |
| $\beta$ -Alanine       | H <sub>3</sub> Й—СН <sub>2</sub> —СН <sub>2</sub> —СОО-                                                            | Found in the vitamin pantothenic acid and in some important natural peptides |
| D-Alanine              | COO-<br>H—C—NH <sub>3</sub><br> <br>CH <sub>3</sub>                                                                | In polypeptides in some bacterial cell walls                                 |
| γ-Aminobutyric<br>acid | н <sub>а</sub> ћ—сн <sub>2</sub> —сн <sub>2</sub> —соо-                                                            | Brain, other animal tissues; functions as neurotransmitter                   |
| D-Glutamic acid        | COO-<br>H-C-NH <sub>3</sub><br>-<br>CH <sub>2</sub><br>-<br>CH <sub>2</sub> COO-<br>COO-                           | In polypeptides in some bacterial cell walls                                 |
| L-Homoserine           | СОО-<br>Н <sub>3</sub> Й—С—н<br>Н<br>СН <sub>2</sub> — СН <sub>2</sub> ОН                                          | Many tissues; an intermediate in amino acid metabolism                       |
| 1-Ornithine            | СОО <sup>-</sup><br>Н <sub>3</sub> Ň—С—н<br> <br>СН <sub>2</sub> —СН <sub>2</sub> —СН <sub>2</sub> ЙН <sub>3</sub> | Many tissues; an intermediate in arginine synthesis                          |
| Sarcosine              | CH <sub>3</sub> —N—CH <sub>2</sub> —COO-<br> <br>  H                                                               | Many tissues; intermediate in amino acid synthesis                           |
| L-Thyroxine            | СОО-<br>Н <sub>3</sub> Й-С-Н<br>СН <sub>2</sub> -ОН                                                                | Thyroid gland; is thyroid hormone (I = iodine)                               |

#### Contenido de la clase

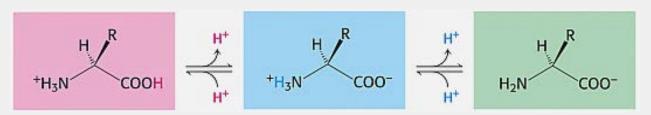
### Aminoácidos:

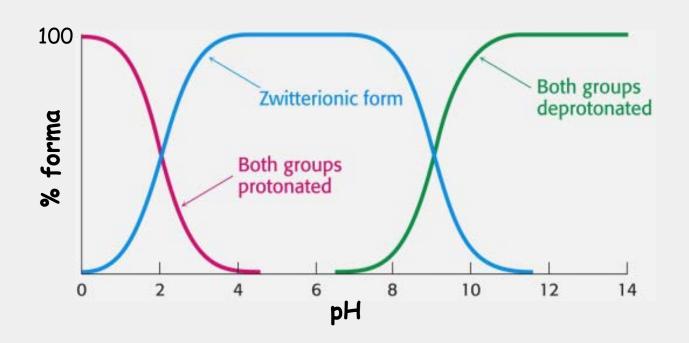
- Estructura y clasificación según la estructura
- Clasificación según los grupos R
- No convencionales
- Propiedades ácido-base
- Métodos de estudio


# Péptidos

- Hidrólisis
- Síntesis
- Actividad biológica

#### Ionización de Aa en solución acuosa


Zwitterion (iones dipolares, iones híbridos)


- neutro a pH 7: (+) H<sub>3</sub>N<sup>+</sup> (-) COO<sup>-</sup>
- dipolo eléctrico
- ácido: dador de H<sup>+</sup>
   base: aceptor de H<sup>+</sup>



## Propiedades ácido-base de los Aas

#### Zwitterion





### Aa se comportan como ácidos o bases

Ácido: dador de H<sup>+</sup>

Base: aceptor de H<sup>+</sup>

- Naturaleza dual: anfóteros = anfolitos (electrolitos anfóteros)
- Par ácido-base conjugados

Ácido diprótico: Aa monoamino monocarboxílico, totalmente protonado

Carga neta:

| Monpolar, aliphatic   R groups   Gly G   75   2.34   9.60   5.97   6.01   7.2   7.2   7.2   7.2   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.3   7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p.K <sub>a</sub> values      |           |                |                         |                         |                                      |            |                              |                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|----------------|-------------------------|-------------------------|--------------------------------------|------------|------------------------------|----------------------------|
| R groups   Glycine   Gly G   75   2.34   9.60   5.97   COO   7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Amino acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |           | М,             | р <i>К</i> ₁<br>(—СООН) | p <i>K</i> ₂<br>(—NH₃³) | p <i>K</i> <sub>R</sub><br>(R group) | pl         |                              | Occurrence in proteins (%) |
| Glycine Gly G 75 2.34 9.60 5.97 COO 7.2 Alanine Ala A 89 2.34 9.69 6.01 H3N-C-H 6.6 COO 7.8 CH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |                         |                         |                                      |            |                              |                            |
| Alanine Ala A 89 Valine Vali V 117 2.32 9.62 5.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gly                          | G         | 75             | 2.34                    | 9.60                    |                                      | 5.97       | COO-                         | 7.2                        |
| Value Valive Leucine Leu L 131 2.36 9.60 5.98 lsoleucine lle I 131 2.36 9.60 5.98 lsoleucine lle I 131 2.36 9.68 6.02 Methionine Met M 149 2.28 9.21 5.74 2.3  Aromatic R groups Pherylalanine Phe F 165 1.83 9.13 5.48 OH 3.9  COO COO COO COO 2.38 9.39 5.89 Tyrosine 1.4  CH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Alanine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ala                          | A         | 89             | 2.34                    | 9.69                    |                                      | 6.01       | . 1                          | 7.8                        |
| Isoleucine   Ile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Valine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Val                          | ٧         | 117            | 2.32                    | 9.62                    |                                      | 5.97       | $_{1}^{\mathrm{H_{3}N-C-H}}$ | 6.6                        |
| Methionine         Met         M         149         2.28         9.21         5.74         2.3           Aromatic R groups         Phenylalanine         Phe         F         165         1.83         9.13         5.48         OH         3.9           COO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Leucine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Leu                          | L         | 131            | 2.36                    | 9.60                    |                                      | 5.98       | $\dot{ m CH}_2$              | 9.1                        |
| Methionine         Met         M         149         2.28         9.21         5.74         2.3           Aromatic R groups         Phenylalanine         Phe         F         165         1.83         9.13         5.48         OH         3.9           COO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Isoleucine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lle                          |           | 131            | 2.36                    | 9.68                    |                                      | 6.02       |                              | 5.3                        |
| Aromatic R groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Methionine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Met                          | M         | 149            |                         |                         |                                      | 5.74       |                              | 2.3                        |
| Phenylalanine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |                         |                         |                                      |            |                              |                            |
| COO COO COO COO COO 2.38 9.39 10.07 5.66 Tyrosine 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Disc                         | -         | 105            | 1.00                    | 0.13                    |                                      | E 40       | ОН                           | 2.0                        |
| COO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Phenylalanine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rne                          | F         | 100            |                         |                         | 10.07                                |            | 011                          |                            |
| 1.4   1.4   1.5   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.8   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.4   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ç00 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $COO^-$                      | ÇC        | 00-            |                         |                         | 10.07                                |            | Tyrosine                     |                            |
| CH2 CH2 CH2 CH2 CH4 1.99 10.96 6.48 CH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ч_н                          | H.NC-     |                | 2.38                    | 9.39                    |                                      | 5.89       | Tyrosine                     | 1.4                        |
| CH2 CH2 CH2 CH 1.99 10.96 6.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |                         |                         |                                      |            |                              | _                          |
| CH2 CH2 CH2 CH3 CH4 1.99 10.96 6.48 6.48 6.48 6.48 6.48 6.48 6.48 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $CH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $^{\circ}\mathrm{H}_{2}$     | ÇI        | $\mathrm{H}_2$ |                         |                         |                                      |            | COO-                         |                            |
| CH2 CH2 CH3 CH4 1.99 10.96 6.48 5.27 CH2 1.99 10.96 5.20 5.87 CH2 1.99 10.28 8.18 5.07 1.99 10.28 8.18 5.07 1.99 10.28 8.18 5.07 1.99 10.28 8.18 5.07 1.99 10.28 8.18 5.07 1.99 10.28 8.18 5.07 1.99 10.28 8.18 5.07 1.99 10.28 8.18 5.07 1.99 10.28 8.18 5.07 1.99 10.28 8.18 5.07 1.99 10.28 8.18 5.07 1.99 10.28 8.18 5.07 1.99 10.28 8.18 5.07 1.99 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.28 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ m CH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $^{\circ}\mathrm{H}_{\circ}$ | Ċ-        | -NH            |                         |                         |                                      |            |                              |                            |
| 2.02 8.80 5.41 SH 4.3 Cysteine  Lysine Arginine Histidine  Lysine His H 155 1.82 9.17 6.00 7.59 -3.2 2.3 Arginine Arg R 174 2.17 9.04 12.48 10.76 -4.5 5.1  Negatively charged R groups  Aspartate Asp D 133 1.88 9.60 3.65 2.77 Glutamate Glu E 147 2.19 9.67 4.25 3.22  A scale combining hydrophobicity and hydrophilicity of R groups; it can be used to measure the tendency COO COO COO COO COO COO COO COO COO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                            |           | CH             |                         |                         |                                      |            | H <sub>3</sub> N−C−H         |                            |
| 2.02   8.80   5.41   SH   4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\operatorname{CH}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathcal{C}\mathbf{H}_2$    | C-        | -N             |                         |                         |                                      |            | $\dot{\mathrm{CH}}_2$        |                            |
| Lysine Arginine Histidine  Lysine Lys K 146 2.18 8.95 10.53 9.74 -3.9 5.9 Histidine His H 155 1.82 9.17 6.00 7.59 -3.2 2.3 Arginine Arg R 174 2.17 9.04 12.48 10.76 -4.5 5.1  Negatively charged R groups Aspartate Asp D 133 1.88 9.60 3.65 2.77 Aspartate Glu E 147 2.19 9.67 4.25 3.22  A scale combining hydrophobicity and hydrophilicity of R groups; it can be used to measure the tendency of COO COO COO COO COO COO COO COO COO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\mathrm{CH}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IΗ                           | H         | - 1            |                         |                         | 8.18                                 |            | SH                           |                            |
| Lysine Arginine Histidine  Lysine Lys K 146 2.18 8.95 10.53 9.74 -3.9 5.9  Histidine His H 155 1.82 9.17 6.00 7.59 -3.2 2.3  Arginine Arg R 174 2.17 9.04 12.48 10.76 -4.5 5.1  Negatively charged R groups  Aspartate Asp D 133 1.88 9.60 3.65 2.77  Glutamate Glu E 147 2.19 9.67 4.25 3.22  A scale combining hydrophobicity and hydrophilicity of R groups; it can be used to measure the tendency of COO COO COO COO COO COO COO COO COO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +NH-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | '-NH-                        |           |                |                         |                         |                                      |            |                              |                            |
| Lysine         Arginine         Histidine           Lysine         Lys K         146         2.18         8.95         10.53         9.74         -3.9         5.9           Histidine         His H         155         1.82         9.17         6.00         7.59         -3.2         2.3           Arginine         Arg R         174         2.17         9.04         12.48         10.76         -4.5         5.1           Negatively charged           R groups         Aspartate         Asp D         133         1.88         9.60         3.65         2.77         H <sub>3</sub> N-C-H         CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> COO-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                            |           |                | 2.17                    | 9.13                    |                                      | 5.65       | Cysteine                     | 4.2                        |
| Lysine Lys K 146 2.18 8.95 10.53 9.74 -3.9 5.9 Histidine His H 155 1.82 9.17 6.00 7.59 -3.2 2.3 Arginine Arg R 174 2.17 9.04 12.48 10.76 -4.5 5.1  Negatively charged R groups Aspartate Asp D 133 1.88 9.60 3.65 2.77 Glutamate Glu E 147 2.19 9.67 4.25 3.22  A scale combining hydrophobicity and hydrophilicity of R groups; it can be used to measure the tendency COO COO COO COO COO COO COO COO COO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                            |           |                |                         |                         |                                      |            |                              | 4                          |
| Histidine His H 155 1.82 9.17 6.00 7.59 -3.2 2.3 Arginine Arg R 174 2.17 9.04 12.48 10.76 -4.5 5.1  Negatively charged R groups Aspartate Asp D 133 1.88 9.60 3.65 2.77 Glutamate Glu E 147 2.19 9.67 4.25 3.22  A scale combining hydrophobicity and hydrophilicity of R groups; it can be used to measure the tendency of COO COO COO COO COO COO COO COO COO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |           |                |                         |                         |                                      |            |                              |                            |
| Arginine Arg R 174 2.17 9.04 12.48 10.76 $-4.5$ 5.1 Negatively charged R groups Aspartate Asp D 133 1.88 9.60 3.65 2.77 $H_3\dot{N}-C-H$ $H_3\dot{N}-C-H$ $H_3\dot{N}-C$ COO CHaranate Glu E 147 2.19 9.67 4.25 3.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P. Control of the con | 100                          |           |                |                         |                         |                                      |            |                              | 5.9                        |
| Negatively charged R groups Aspartate Asp D 133 1.88 9.60 3.65 2.77 Glutamate Glu E 147 2.19 9.67 4.25 3.22  A scale combining hydrophobicity and hydrophilicity of R groups; it can be used to measure the tendency of COO COO COO COO COO COO COO COO COO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Histidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | His                          |           |                |                         |                         |                                      |            |                              | 2.3                        |
| R groups Aspartate Asp D 133 1.88 9.60 3.65 2.77 Glutamate Glu E 147 2.19 9.67 4.25 3.22  A scale combining hydrophobicity and hydrophilicity of R groups; it can be used to measure the tendency $COO^ COO^ CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Arginine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Arg                          | R         | 174            | 2.17                    | 9.04                    | 12.48                                | 10.76      | -4.5                         | 5.1                        |
| Aspartate Asp D 133 1.88 9.60 3.65 2.77 $H_3\dot{N}-\dot{C}-H$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |                         |                         |                                      |            |                              |                            |
| Glutamate Glu E 147 2.19 9.67 4.25 3.22 H <sub>3</sub> N-C-H H <sub>3</sub> N-C GH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> COO COO COO COO COO COO COO COO COO CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 6         | 4 444          | 1.00                    | 0.00                    | 20.00                                | 0.77       | Ç00-                         | ÇOO-                       |
| A scale combining hydrophobicity and hydrophilicity of R groups; it can be used to measure the tendency of COO COO COO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |                         |                         |                                      |            | H <sub>o</sub> N—C—H         | $_{\mathrm{H_3N-C-H}}^{+}$ |
| A scale combining hydrophobicity and hydrophilicity of R groups; it can be used to measure the tendency coo-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Glutamate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Glu                          | E         | 147            | 2.19                    | 9.67                    | 4.25                                 | 3.22       |                              |                            |
| Con Charter 10 Com Vista I C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |           |                |                         |                         |                                      |            | $\operatorname{CH}_2$        | $\dot{\mathrm{CH}}_2$      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A scale combining h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ydrophob                     | icity and | d hydropi      | hilicity of R group     | s; it can be us         | sed to measure                       | the tenden | cy c COO-                    | $\dot{\mathrm{CH}}_2$      |
| queous environment (- values) or a hydrophobic environment (+ values). See Chapter 12. From Kyte, J. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | queous environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (- value                     | s) or a h | nydropho       | bic environment (       | + values). See          | e Chapter 12.                        | From Kyte, | J. 8                         | COO-                       |
| 10f. 157, 105 - 132.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | iol. <b>157,</b> 105 – 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |           |                |                         |                         |                                      |            | A                            | Glutamate                  |

<sup>&#</sup>x27;Average occurrence in over 1150 proteins. From Doolittle, R.F. (1989) Redundancies in protein sequences Structure and the Principles of Protein Conformation (Fasman, G.D., ed) Plenum Press, NY, pp. 599–623.

#### Curvas de titulación de un Aa

Determinar cantidad de un ácido en una solución

#### Adición de OHT:

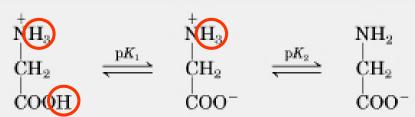
- eliminación de H<sup>+</sup> de un Aa (colorante indicador)
- formación de  $H_2O$ .

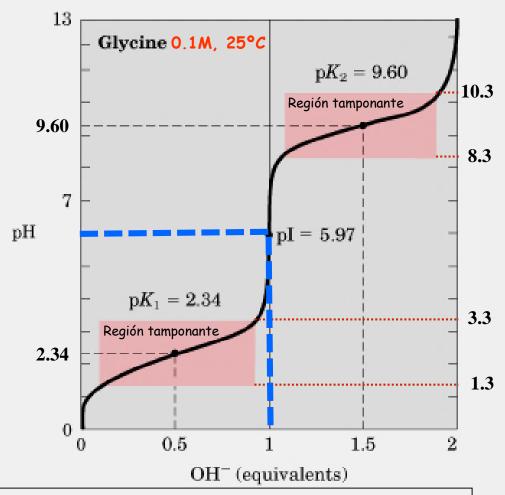
 $K_a$ : constante de disociación de ácido (K de equilibrio)

$$pK_a = log 1/K_a = -log K_a$$

 $pK_a$ : medida de la tendencia de un grupo a ceder un  $H^+$ 

$$f K_a \circ \oint p K_a = \text{ácido fuerte}$$


#### pI: punto isoeléctrico o pH isoeléctrico

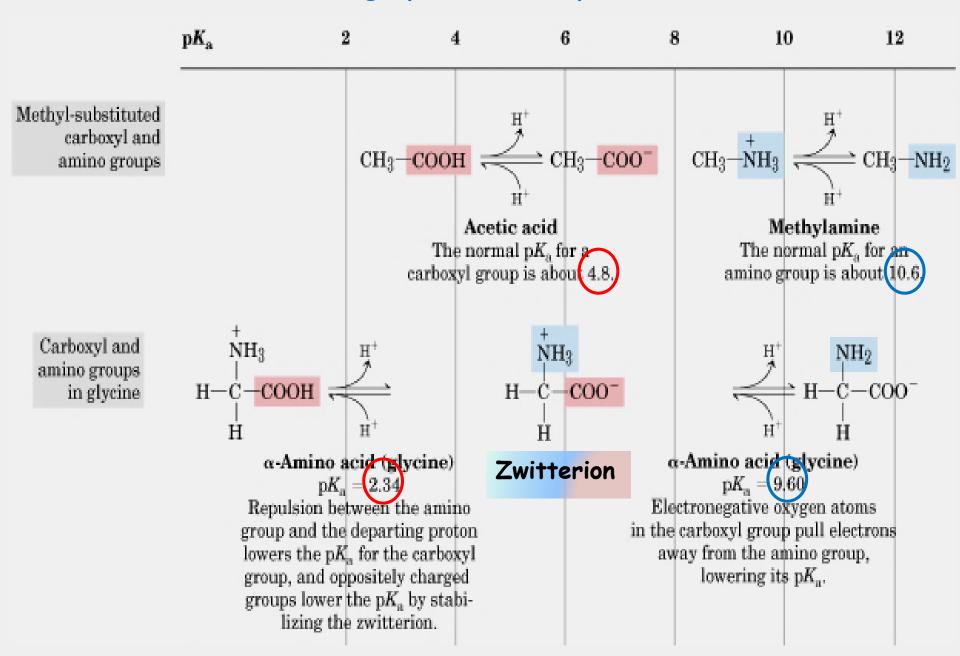

- Aa en forma dipolar
- sin carga eléctrica neta:

pH < pI: carga neta (+) -> cátodo

pH > pI: carga neta (-) -> ánodo

#### Glicina

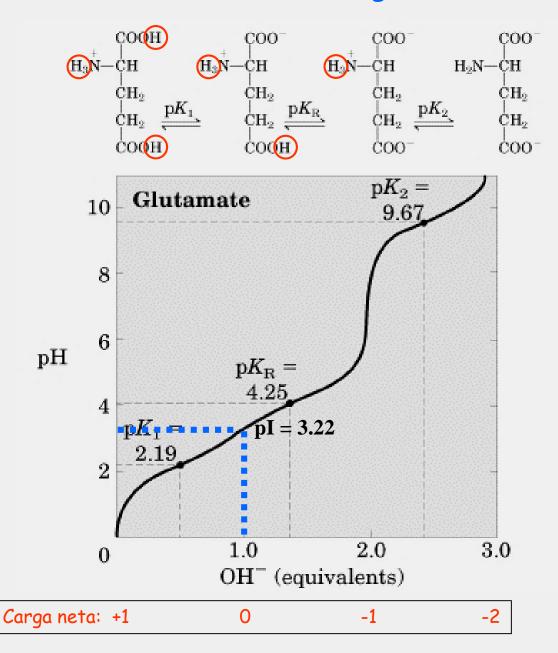




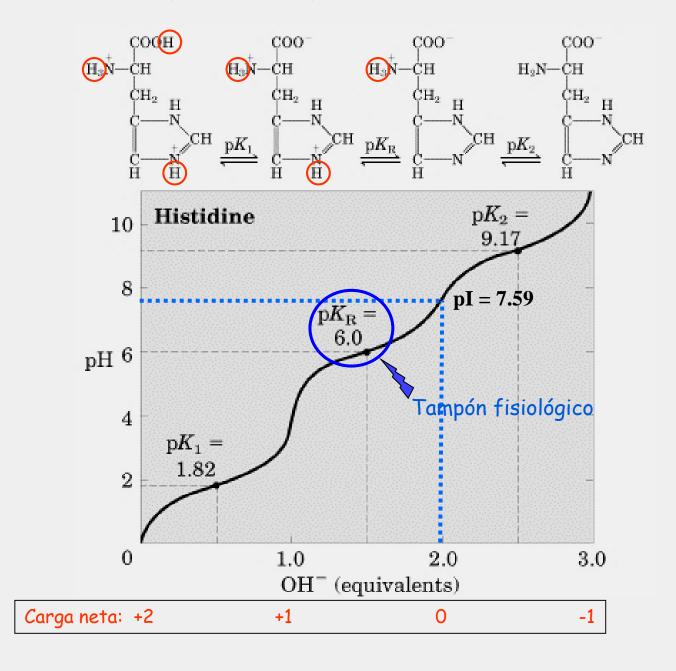

Carga neta: +1

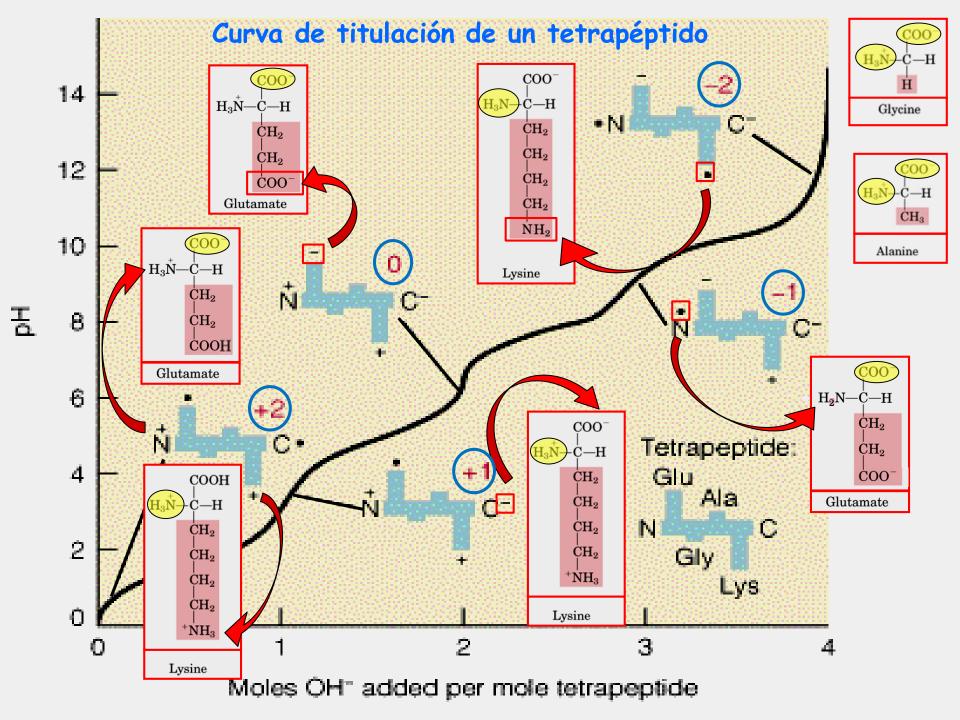
0

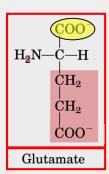
-1


## Interacción entre los grupos $\alpha$ -amino y $\alpha$ -carboxilo de un $\alpha$ -Aa

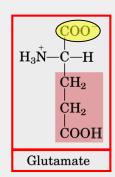



# $pK_a$ y pI de Aa con grupos R no ionizables y ionizables

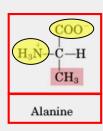

|                                 |                      |     |                         | pK <sub>a</sub> values |                                      |       |                                                             |                 |
|---------------------------------|----------------------|-----|-------------------------|------------------------|--------------------------------------|-------|-------------------------------------------------------------|-----------------|
| Amino acid                      | Abbreviated<br>names |     | р <i>К</i> 1<br>(—соон) | p <i>K</i> 2<br>(—NH3) | p <i>K</i> <sub>R</sub><br>(R group) | pl    |                                                             |                 |
| Nonpolar, aliphatic<br>R groups |                      |     |                         |                        |                                      |       |                                                             |                 |
| Glycine                         | Gly                  | G   | 2.34                    | 9.60                   |                                      | 5.97  | Aa: R no ionizab                                            | ole             |
| Alanine                         | Ala                  | Α   | 2.34                    | 9.69                   |                                      | 6.01  |                                                             |                 |
| Valine                          | Val                  | ٧   | 2.32                    | 9.62                   |                                      | 5.97  | pK <sub>1</sub> : 1.8 - 2.4<br>pK <sub>2</sub> : 8.8 - 11.0 | ماندناد بم      |
| Leucine                         | Leu                  | L   | 2.36                    | 9.60                   |                                      | 5.98  | p K <sub>2</sub> : 8.8 - 11.0                               | ≈ giicina       |
| Isoleucine                      | He                   | 1   | 2.36                    | 9.68                   |                                      | 6.02  | P. 12 0.0 J                                                 |                 |
| Methionine                      | Met                  | M   | 2.28                    | 9.21                   |                                      | 5.74  | COO-                                                        |                 |
| Aromatic R groups               |                      |     |                         |                        |                                      |       | $^{\dagger}_{3}\overset{ }{\mathrm{N-C-H}}$                 |                 |
| Phenylalanine                   | Phe                  | F   | 1.83                    | 9.13                   |                                      | 5.48  |                                                             |                 |
| Tyrosine                        | Tyr                  | Ÿ   | 2.20                    | 9.11                   | 10.07                                | 5.66  | $\dot{\mathrm{CH}}_2$                                       |                 |
| Tryptophan                      | Trp                  | W   | 2.38                    | 9.39                   | 10.07                                | 5.89  |                                                             |                 |
| Polar, uncharged<br>R groups    |                      |     |                         |                        |                                      |       | ОН                                                          |                 |
| Serine                          | Ser                  | S   | 2.21                    | 9.15                   |                                      | 5.68  |                                                             | ÇOO-            |
| Proline                         | Pro                  | Р   | 1.99                    | 10.96                  |                                      | 6.48  | Tyrosine                                                    | $H_3N - C - H$  |
| Threonine                       | Thr                  | T   | 2.11                    | 9.62                   |                                      | 5.87  |                                                             | CH <sub>2</sub> |
| Cysteine                        | Cys                  | C   | 1.96                    | 10.28                  | 8.18                                 | 5.07  |                                                             | 1 -             |
| Asparagine                      | Asn                  | N   | 2.02                    | 8.80                   |                                      | 5.41  |                                                             | ŚН              |
| Glutamine                       | GIn                  | Q   | 2.17                    | 9.13                   |                                      | 5.65  |                                                             | Cysteine        |
| Positively charged<br>R groups  |                      |     |                         |                        |                                      |       | Aa: R ionizable                                             |                 |
| Lysine                          | Lys                  | K   | 2.18                    | 8.95                   | 10.53                                | 9.74  | Au. K IOIIIZUDIE                                            |                 |
| Histidine                       | His                  | Ĥ   | 1.82                    | 9.17                   | 6.00                                 | 7.59  | $pK_1$ , $pK_2$ y $pK_R$                                    |                 |
|                                 |                      | R   | 2.17                    | 9.04                   | 12.48                                | 10.76 | ν <sub>1</sub> , ν <sub>2</sub> γ ν <sub>R</sub>            |                 |
| Arginine                        | Arg                  | IX. | 2.17                    | 9.04                   | 12.40                                | 10.76 |                                                             |                 |
| Negatively charged<br>R groups  |                      |     |                         |                        |                                      |       |                                                             |                 |
| Aspartate                       | Asp                  | D   | 1.88                    | 9.60                   | 3.65                                 | 2.77  |                                                             |                 |
| Glutamate                       | Glu                  | Ε   | 2.19                    | 9.67                   | 4.25                                 | 3.22  |                                                             |                 |

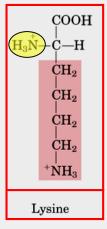

## Curva de titulación de glutamato




## Curva de titulación de histidina
















# PI de algunas proteínas

| The Isoelectric Points of Some Proteins |      |  |  |  |  |  |
|-----------------------------------------|------|--|--|--|--|--|
| Protein                                 | pl   |  |  |  |  |  |
| Pepsin                                  | ~1.0 |  |  |  |  |  |
| Egg albumin                             | 4.6  |  |  |  |  |  |
| Serum albumin                           | 4.9  |  |  |  |  |  |
| Urease                                  | 5.0  |  |  |  |  |  |
| eta-Lactoglobulin                       | 5.2  |  |  |  |  |  |
| Hemoglobin                              | 6.8  |  |  |  |  |  |
| Myoglobin                               | 7.0  |  |  |  |  |  |
| Chymotrypsinogen                        | 9.5  |  |  |  |  |  |
| Cytochrome <i>c</i>                     | 10.7 |  |  |  |  |  |
| Lysozyme                                | 11.0 |  |  |  |  |  |

#### Contenido de la clase

#### Aminoácidos:

- Estructura y clasificación según la estructura
- Clasificación según los grupos R
- No convencionales
- Propiedades ácido-base
- Métodos de estudio

# Péptidos

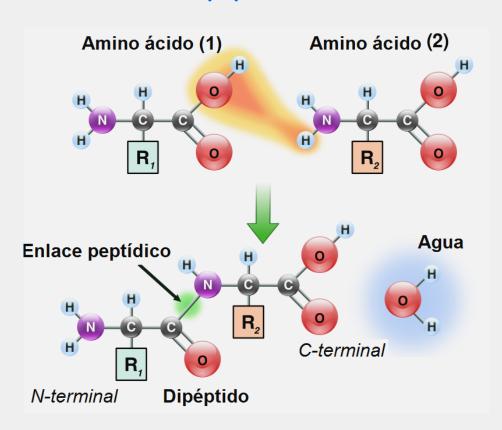
- Hidrólisis
- Síntesis
- Actividad biológica

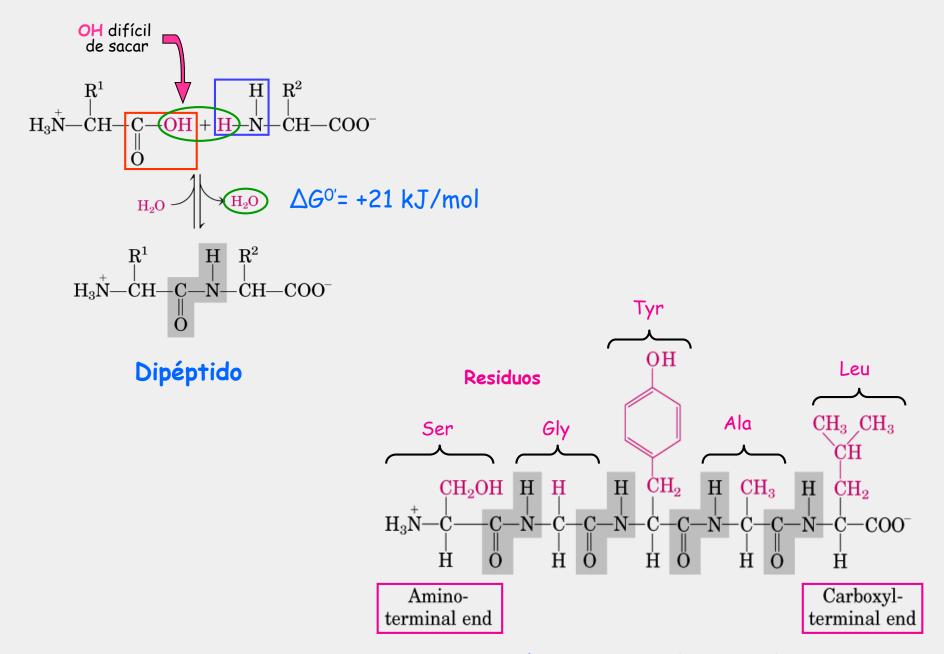
## Contenido de la clase

#### Aminoácidos:

- Estructura y clasificación según la estructura
- Clasificación según los grupos R
- No convencionales
- Propiedades ácido-base
- Métodos de estudio

# Péptidos

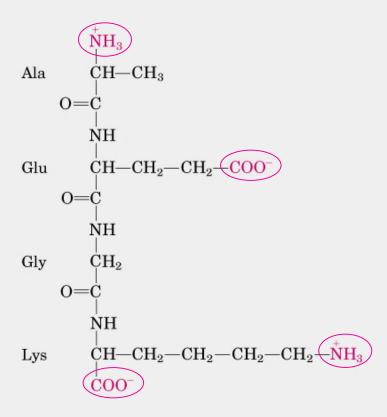

- Hidrólisis
- Síntesis
- Actividad biológica


## Péptidos

- Polímero de Aa
- Péptidos: 2-3 Aa
- Oligopéptidos: menos de 10-20 Aa (sin estructura 2ª)

pocas docenas a miles Aa: Polipéptido Proteína: uno o más polipéptidos

#### Enlace peptídico: unión covalente






Penta péptido: Ser-Gly-Tyr-Ala-Leu

## Los péptidos se ionizan

#### Grupos ionizables = propiedades ácido-base de un péptido



Alanilglutamilglicillisina

#### Alanilalanina

$$\begin{array}{c|cccc} & CH_3 & H & CH_3 \\ \hline & & & | & | & | \\ H_3N & CH - C - N - CH - COOH \\ \hline & & & | & | \\ O & & & \\ \end{array}$$

Forma catiónica < pH 3

$$\begin{array}{c|cccc} \mathbf{CH_3} & \mathbf{H} & \mathbf{CH_3} \\ & & \mathbf{H_3N-CH-C-N-CH-COO^-} \\ & & & \mathbf{O} \end{array}$$

Forma isoeléctrica

$$\begin{array}{c|cccc} \mathbf{CH_3} & \mathbf{H} & \mathbf{CH_3} \\ & & \mathbf{H_2N-CH-C-N-CH-COO^-} \\ & & & \mathbf{O} \end{array}$$

Forma aniónica > pH 10

#### Contenido de la clase

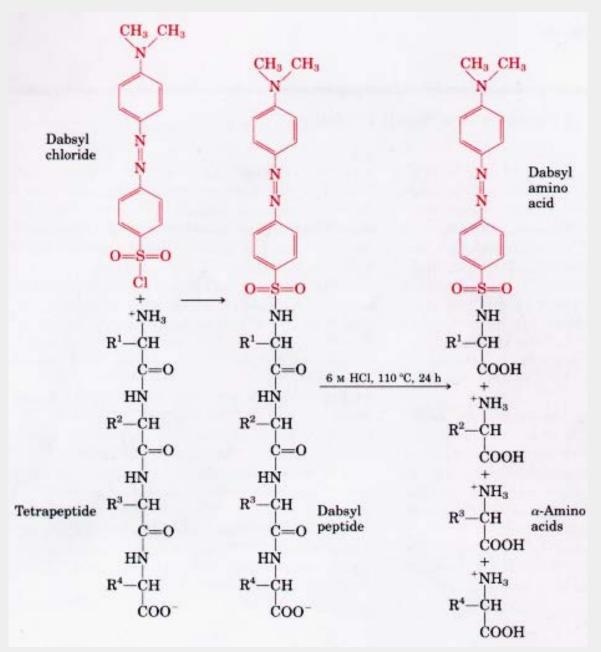
## Aminoácidos:

- Estructura y clasificación según la estructura
- Clasificación según los grupos R
- No convencionales
- Propiedades ácido-base
- Métodos de estudio

# Péptidos

- Hidrólisis
- Síntesis
- Actividad biológica

# Hidrólisis química de enlaces peptídicos


Degradación de Edman: determinación de la composición de Aa e identificación del residuo amino terminal

#### Identificación del residuo amino terminal (o R: lisina) con Cloruro de Dabsilo

$$\begin{array}{c} CH_3 \\ CH_3 \end{array} N - \begin{array}{c} \\ \\ \end{array} N - N = N - \begin{array}{c} \\ \\ \end{array} - SO_2C1 \end{array}$$

Dabsyl chloride

$$\mathrm{CH_3}$$
  $\mathrm{CH_3}$   $\mathrm{SO_2Cl}$  Dansyl chloride



# Hidrólisis enzimática: proteasas

| N-terminal ··· · · · · · · · · · · · · · · · · · |                                           |                                                          |
|--------------------------------------------------|-------------------------------------------|----------------------------------------------------------|
| Enzyme                                           | Preferred Site <sup>a</sup>               | Source                                                   |
| Trypsin                                          | $R_1 = Lys$ , $Arg$                       | From digestive systems of<br>animals, many other sources |
| Chymotrypsin                                     | $R_1$ = Tyr, Trp, Phe, Leu                | Same as trypsin                                          |
| Thrombin                                         | $R_1 = Arg$                               | From blood; involved<br>in coagulation                   |
| V-8 protease                                     | $R_1 = Asp$ , $Glu$                       | From Staphylococcus aureus                               |
| Prolyl endopeptidase                             | $R_1 = Pro$                               | Lamb kidney, other tissues                               |
| Subtilisin                                       | Very little specificity                   | From various bacilli                                     |
| Carboxypeptidase A                               | R <sub>2</sub> = C-terminal<br>amino acid | From digestive systems<br>of animals                     |
| Thermolysin                                      | $R_2$ = Leu, Val, Ile, Met                | From Bacillus thermoproteolyticus                        |

"The residues indicated are those next to which cleavage is most likely. Note that in some cases preference is determined by the residue on the N-terminal side of the cleaved bond  $(R_1)$  and sometimes by the residue to the C-terminal side  $(R_2)$ . Generally, proteases do not cleave where proline is on the other side of the bond. Even prolyl endopeptidase will not cleave if  $R_2 = \text{Pro}$ .

#### Contenido de la clase

## Aminoácidos:

- Estructura y clasificación según la estructura
- Clasificación según los grupos R
- No convencionales
- Propiedades ácido-base
- Métodos de estudio

# Péptidos

- Hidrólisis
- Síntesis
- Actividad biológica

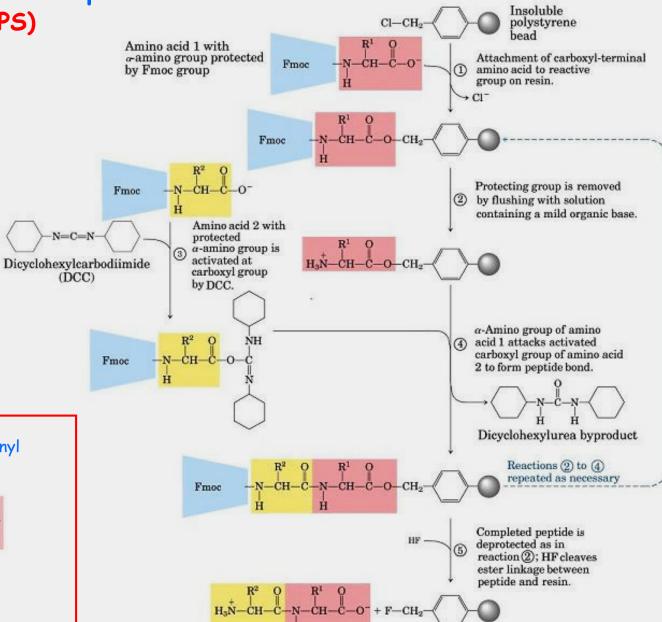
# Obtención y Síntesis de péptidos y proteínas

#### Purificación a partir de un tejido

- trabajoso
- bajas concentraciones

#### Síntesis química directa

- Automatizada, 100Aa en 4 días


(5 seg. en una bacteria)

#### Ingeniería genética

- Metodología del DNA recombinante

Síntesis química de un Péptido en Fase Sólido (SPPS)

#### Grupo clorometilfenilo



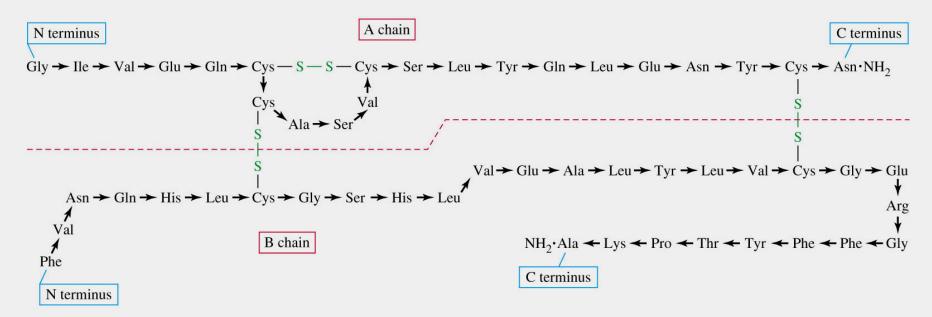
- Fmoc: Fluorenyl methoxy carbonyl

- t-Boc (or Boc): tert Butyl oxy carbonyl

#### Contenido de la clase

## Aminoácidos:

- Estructura y clasificación según la estructura
- Clasificación según los grupos R
- No convencionales
- Propiedades ácido-base
- Métodos de estudio

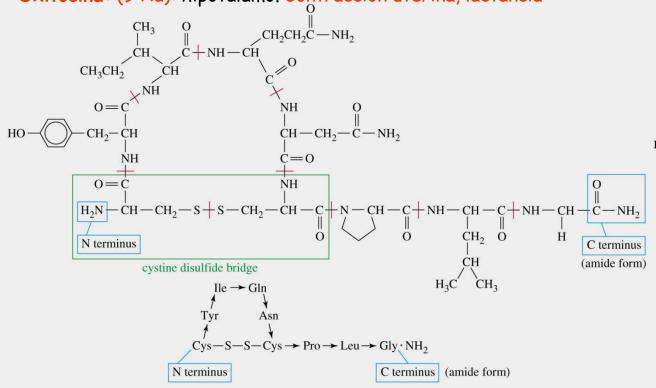

# Péptidos

- Hidrólisis
- Síntesis
- Actividad biológica

# Polipéptidos pequeños con actividad biológica

Insulina: polipéptidos A (21 Aa) y B (30 Aa):

Páncreas. Absorción de glucosa: hipoglucemiante



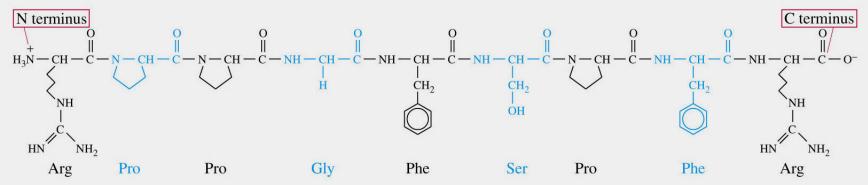

Glucagón: polipéptido de 29 Aa

Páncreas. Gluconeogénesis-glucogenólisis: hiperglucemiante

### Péptidos pequeño naturales

#### Oxitocina: (9 Aa): hipotálamo. Contracción uterina, lactancia




### Péptido pequeño sintético

$$\begin{array}{c|c} COO^-\\ CH_2 O CH_2 O\\ H_3 \overset{+}{N}-CH-C-\overset{-}{N}-CH-C-OCH_3\\ \end{array}$$

L-Aspartyl-L-phenylalanine methyl ester (aspartame)

NutraSweet®

#### Bradiquinina (9 Aa): Hígado. Precursor de BQ: coagulación, inflamación, presión sanguínea



Leucina encefalina

Try-Gly-Gly-Phe-Leu-OH

Metionina encefalina

Try-Gly-Gly-Phe-Met-OH

β-Endorfina

Try-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val
Thr-Leu-Phe-Lys-Asn-Ala-He-Val-Lys-Asn-Ala-His-Lys-Gly-Gln
OH

Glándula pituitaria e hipotálamo. "Analgésicos endógenos": inhibición del dolor

Bradiquinina

Oxitocina

 $CH_3$ 

TRH (hipotálamo): H. liberadora de Tirotropina (TSH). En hipófisis: estimula liberación de TSH (producción de H. tiroideas) y PRL (producción de leche)

Sistema renina-angiotensina-aldosterona: riñon-hígado-pulmón-riñon: presión sanguínea y volumen extracelular

# BIBLIOGRAFÍA

- Nelson DL, Cox MM, Principios de Bioquímica de Lehninger, (4ª ed.), 2005. Ediciones Omega.
- Mathews, CK, Van Holde KE, Ahren KG, Bioquímica, (3ª ed.), 2002. Addison Wesley.
- Voet D, Voet JG, Pratt CW. Fundamentos de Bioquímica, (2ª ed.), 2007. Ed. Médica Panamericana.