Proteínas de transporte:

- Hemoglobina
- Lipoproteínas
- -Transportadores de membranas biológicas

Enzimas: reacciones bioquímicas

Proteínas reguladoras:

- Hormonas y proteínas G
- Regulación génica

Propiedades Biológicas de las Proteínas

Proteínas nutrientes de reserva:

- Proteínas de semillas (trigo, maíz, arroz)
- Ovoalbúmina
- Caseina
- Ferritina (Fe)

Otras:

- Monelina (vegetal: edulcorante?)
- Anticongelantes (sangre de peces Antárticos)

Proteínas contráctiles o motiles:

- actina y miosinas
- tubulina: dineinas y kinesinas

Proteínas estructurales:

- Colágeno (tendones, cartílagos, piel)
- Elastina (ligamentos)
- Queratinas (pelos, uñas, plumas)
- Fibroina (fibras de seda de de telarañas)
- Resilina (unión de alas en insectos)

Proteínas de defensa:

- Inmunoglobulinas (anticuerpos)
- Fribrinógeno y trombina (coagulación)
- Venenos de serpientes, toxinas bacterianas, toxinas vegetales (ricina)

- Determinación de pesos moleculares
- Proteínas Simples y conjugadas
- Métodos de estudio
- Purificación
- Secuenciación
- Homología

Proteínas: moléculas grandes

Molecular Data on Some Proteins

	Molecular weight	Number of residues	Number of polypeptide chains
Cytochrome c (human)	13,000	104	1
Ribonuclease A (bovine pancreas)	13,700	124	1
Lysozyme (egg white)	13,930	129	1
Myoglobin (equine heart)	16,890	153	1
Chymotrypsin (bovine pancreas)	21,600	241	3
Chymotrypsinogen (bovine)	22,000	245	1
Hemoglobin (human)	64,500	574	4
Serum albumin (human)	68,500	609	1
Hexokinase (yeast)	102,000	972	2
RNA polymerase (E. coli)	450,000	4,158	<u>2</u> 5
Apolipoprotein B (human)	513,000	4,536	1
Glutamine synthetase (E. coli)	619,000	5,628	(2)
Titin (human)	2,993,000	26,926	1

Mayoría de polipéptidos naturales < 2000 Aa

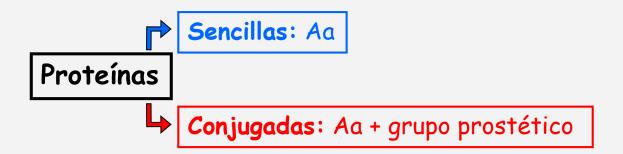
Estimación del N°de Aa en una proteína

Masa molecular relativa (M_r) media de los 20 Aa es \approx 138

Según proporciones de Aa en la proteínas, M_r media es de 128

Formación del enlace peptídico Perdida de H2O (M_r 18): 128 - 18 = 110

 $N^{\circ} \approx \text{de } Aa = M_r \text{ prot.} / 110$


Composición de Aa de dos proteínas

		Number of residues per molecule of protein		
Amino acid	Bovine cytochrome c	Bovine chymotrypsinogen		
Ala	6	22		
Arg	2	4		
Asn	5	15		
Asp	3	8		
Cys	2	10		
GIn	3	10		
Glu	9	5		
Gly	14	23		
His	3	2		
He	6	10		
Leu	6	19		
Lys	18	14		
Met	2	2		
Phe	4	6		
Pro	4	9		
Ser	1	28		
Thr	8	23		
Trp	1	8		
Tyr	4	4		
Val	3	23		
Total	104	245		

^{*}Note that standard procedures for the acid hydrolysis of proteins convert Asn and GIn to Asp and GIu, respectively. In addition, Trp is destroyed. Special procedures must be employed to determine the amounts of these amino acids.

- Determinación de pesos moleculares
- Proteínas Simples y Conjugadas
- Métodos de estudio
- Purificación
- Secuenciación
- Homología

Proteínas compuestas por grupos químicos diferentes a Aa

Class	Prosthetic group(s)	Example
Lipoproteins	Lipids	β_1 -Lipoprotein of blood
Glycoproteins	Carbohydrates	Immunoglobulin G
Phosphoproteins	Phosphate groups	Casein of milk
Hemoproteins	Heme (iron porphyrin)	Hemoglobin
Flavoproteins	Flavin nucleotides	Succinate dehydrogenase
Metalloproteins	Iron	Ferritin
	Zinc	Alcohol dehydrogenase
	Calcium	Calmodulin
	Molybdenum	Dinitrogenase
	Copper	Plastocyanin

- Determinación de pesos moleculares
- Proteínas Simples y Conjugadas
- Métodos de estudio
- Purificación
- Secuenciación
- Homología

Métodos de estudio de las proteínas

Fuentes: tejidos o células.

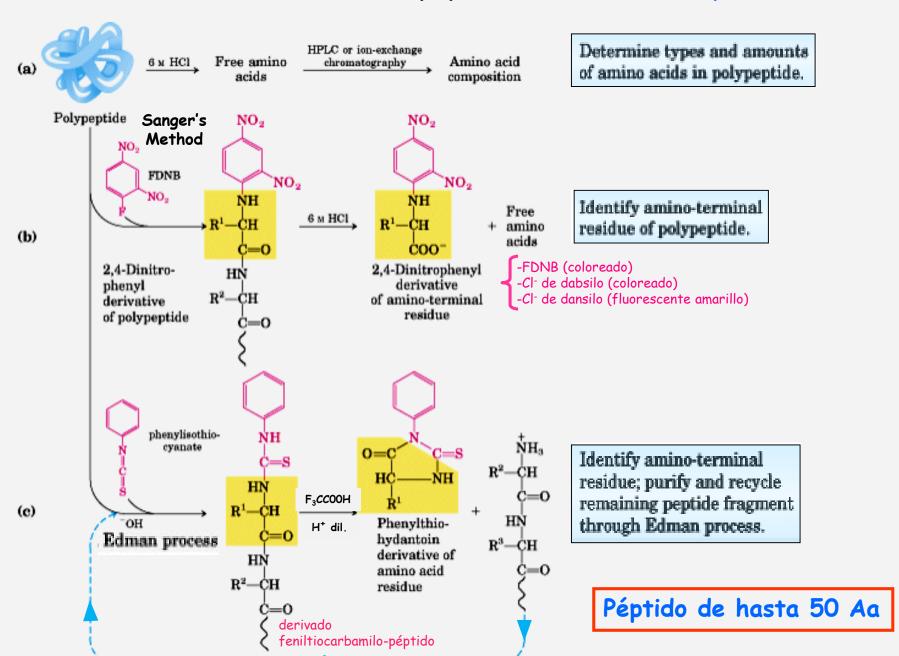
Homogeneización: extracto crudo.

Centrifugación: fraccionamiento subcelular.

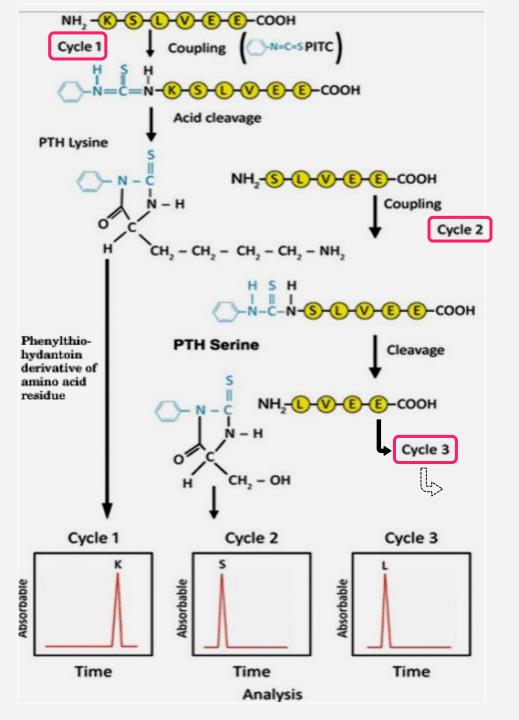
Separación y purificación:

- Precipitación selectiva: ácido, (NH4)₂SO₄, temperaturas elevadas.
- Cromatografía:
 - Intercambio iónico (carga),
 - Filtración en gel (tamaño),
 - Afinidad (ligandos).
- SDS-PAGE y Isolectroenfoque (2DG), Western blot, ELISA (Métodos analíticos).
- Tecnología del DNA recombinante: Proteínas recombinantes

"Cuantificación" de la proteína (estimación)


- Enzima: determinación de la actividad enzimática.
- Proteína de transporte: ensayos de unión de la molécula que transporta.
- Hormonas y toxinas: determinación de efectos biológicos.
- Proteínas estructurales: generalmente representan gran parte de la masa tisular por lo que no es necesario un ensayo específico.

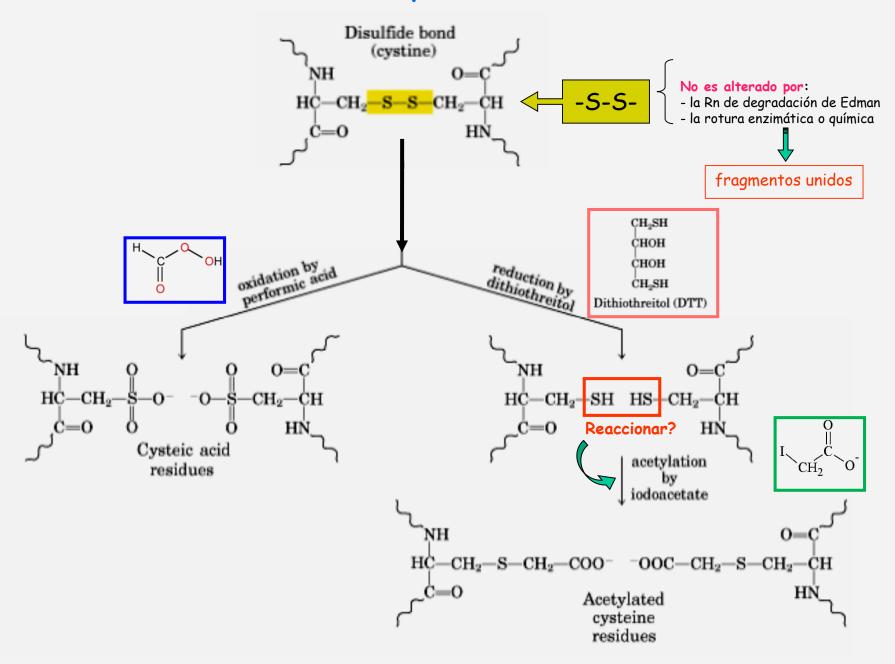
Purificación de una proteína con actividad enzimática


Procedure or step	Fraction volume (ml)	Total protein (mg)	Activity (units)	Specific activity (units/mg)
Crude cellular extract	1,400	10,000	100,000	10
Precipitation with ammonium sulfate	280	3,000	96,000	32
Ion-exchange chromatography	90	400	80,000	200
 Size-exclusion chromatography 	80	100	60,000	600
Affinity chromatog- raphy	6	3	45,000	15,000

- Determinación de pesos moleculares
- Proteínas Simples y Conjugadas
- Métodos de estudio
- Purificación
- Secuenciación
- Homología

Se-cuen-cia-ción de un pép-ti-do (estructura primaria)

Degradación de Edman: secuenciación de un péptido


Secuenciación de un polipéptido de más de 50 aA

precisión $1/\alpha$ longitud del polipéptido

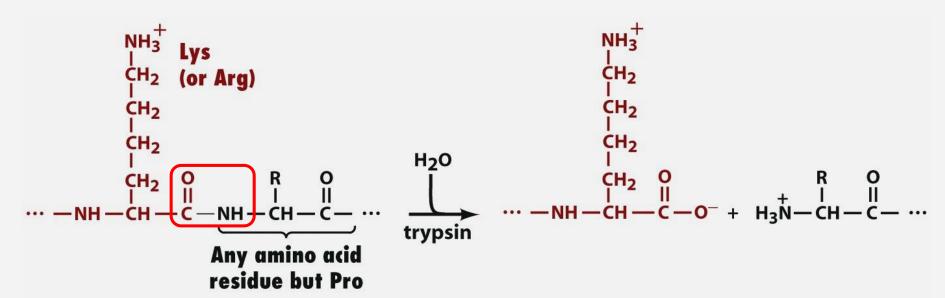
Pasos para la secuenciación

- 1- Rotura de puentes -S-S-
- 2- Rotura de cadena polipeptídica
- 3- Secuenciación del péptido
- 4- Ordenamiento de los fragmentos peptídicos
- 5- Localización de puentes -S-S-

Rotura de puentes -5-5-

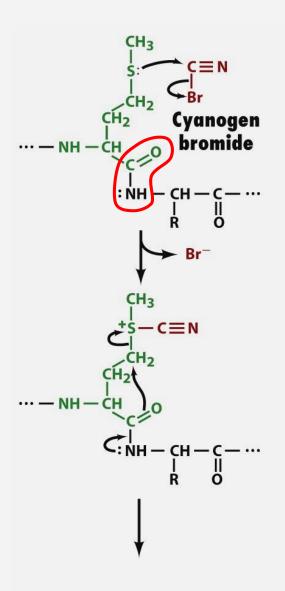
Rotura de la cadena polipeptídica

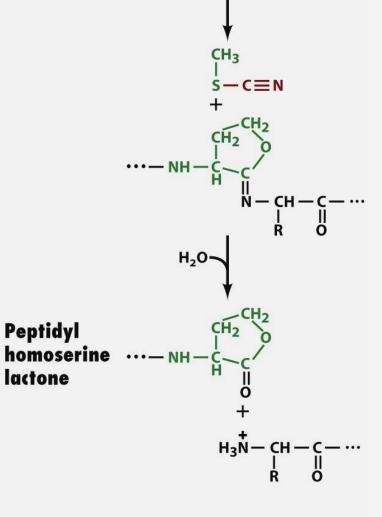
The Specificity of Some Common Methods for Fragmenting Polypeptide Chains


Treatment*	Cleavage points†	
Trypsin	Lys, Arg (C)	
Submaxillarus protease	Arg (C)	
Chymotrypsin	Phe, Trp, Tyr (C)	
Staphylococcus aureus		
V8 protease	Asp, Glu (C)	
Asp- <i>N</i> -protease	Asp, Glu (N)	
Pepsin	Phe, Trp, Tyr (N)	
Endoproteinase Lys C	Lys (C)	
Cyanogen bromide	Met (C)	

†Residues furnishing the primary recognition point for the protease or reagent; peptide bond cleavage occurs on either the carbonyl (C) or the amino (N) side of the indicated amino acid residues.

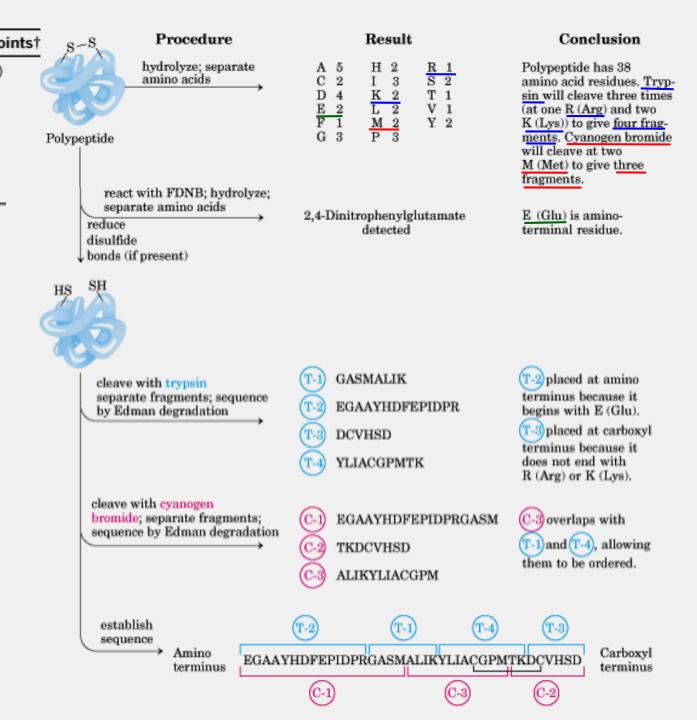
^{*}All except cyanogen bromide are proteases. All are available from commercial sources.


Corte del polipéptido con tripsina


Treatment*	Cleavage points†
Trypsin	Lys, Arg (C)

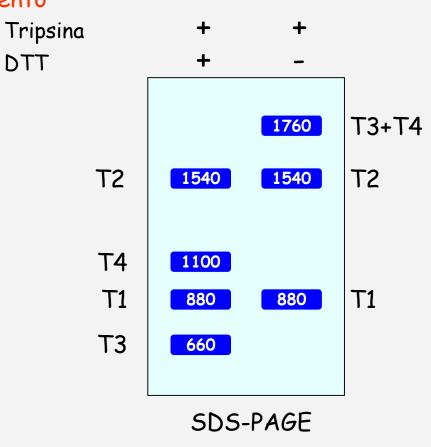
Unnumbered figure pg 113 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons

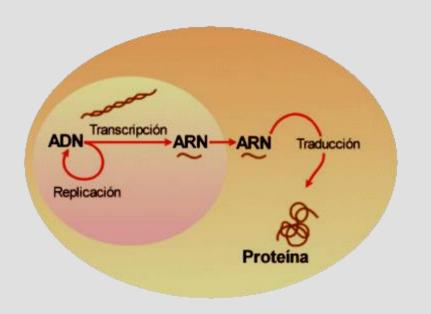
Corte del polipéptido con bromuro de cianógeno

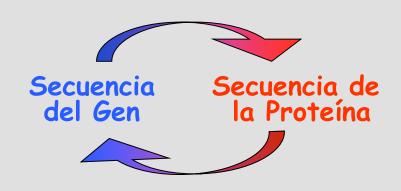

Peptidyl

lactone

Figure 5-16 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons


Treatment*	Cleavage po	
Trypsin	Lys, Arg (C)	
Cyanogen bromide	Met (C)	


Amino acid	Abbrev names	iated
Glycine	Gly	G
Alanine	Ala	A
Valine	Val	V
Leucine	Leu	L
Isoleucine	He	1
Methionine	Met	M
Phenylalanine	Phe	F
Tyrosine	Tyr	Υ
Tryptophan	Trp	W
Serine	Ser	S
Proline	Pro	P
Threonine	Thr	T
Cysteine	Cys	C
Asparagine	Asn	N
Glutamine	Gln	Q
Lysine	Lys	K
Histidine	His	Н
Arginine	Arg	R
Aspartate	Asp	D
Glutamate	Glu	E



Localización de los puentes -S-S-

Tratamiento

Amino acid sequence (protein)

Gln-Tyr-Pro-Thr-Ile-Trp

DNA sequence (gene) CAGTATCCTACGATTTGG

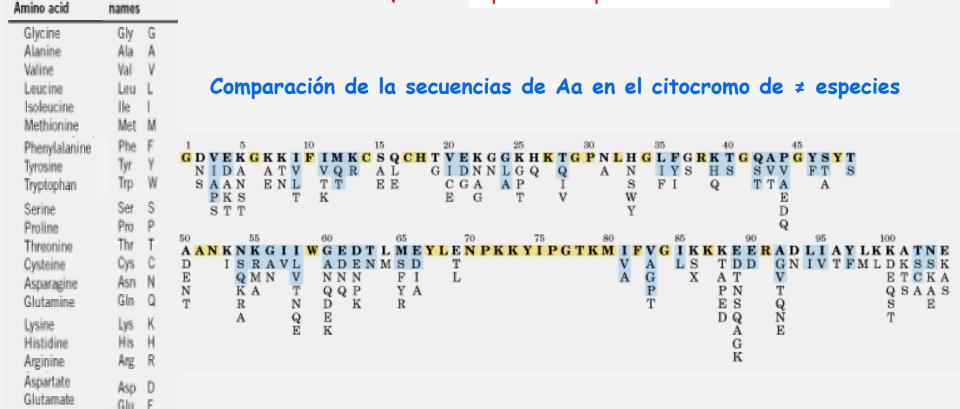
- Secuencia de Aa

 Estructura tridimensional
 Función
 Localización celular
 Evolución
 Evolución

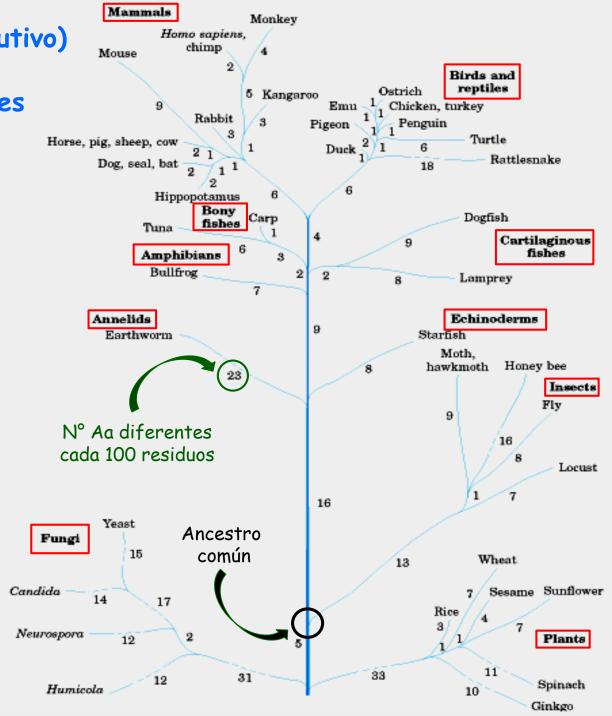
- Determinación de pesos moleculares
- Proteínas Simples y Conjugadas
- Métodos de estudio
- Purificación
- Secuenciación
- Homología

Proteínas homólogas entre especies

- Relacionadas evolutivamente.
- Similar función (Hb).
- Longitud idéntica.


Abbreviated

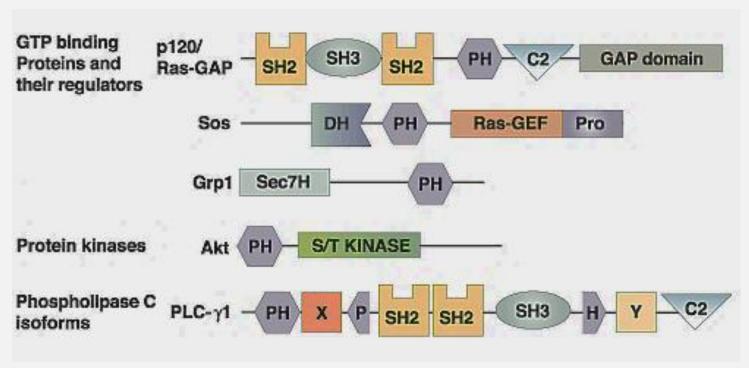
- Muchas posiciones con = Aa:


Residuos invariables: = Aa en = posición

Residuos variables: variación de Aa en = posición

- sustituciones conservadoras (≈ Aa)
- sustituciones NO conservadoras (≠Aa)
 posición hipervariable

Árbol filogenético (evolutivo) de citocromo c de diferentes especies


Dominios

Unión a membrana

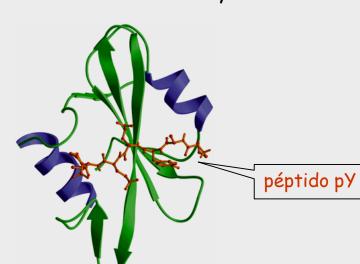
- Dominios PH: unión a PIP (membrana)
- · Dominios C2: unión a PS (membrana)

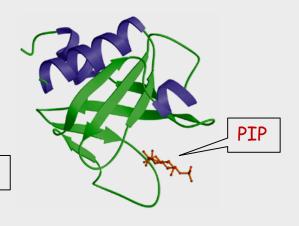
Unión proteína-proteína

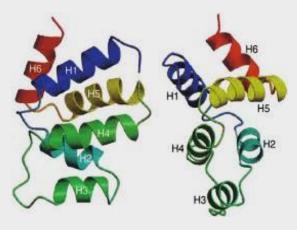
- Dominios SH2: unión fosfo-Tyr
- Dominios PTB: unión fosfo-Tyr
- · Dominios SH3: unión poli-Pro
- · Dominios Death (DD): unión homotrópica

Unión a DNA

- Dominios en dedos de Zn
- · Dominios cremalleras de Leucina
- Homeodominios

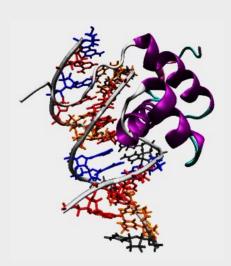

Catalíticos (unión al sustrato)

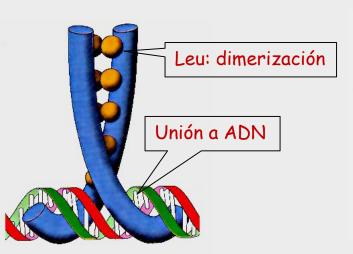

- Dominios quinasa (S/T, Y)
- Dominios GTPasa
- ·XeY

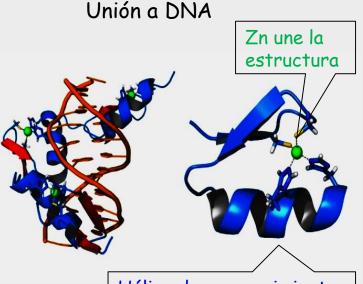

Dominio SH2: Unión a fosfo-Tyr

Dominio PH: Unión a PIP

Dominios "Death"






Homeodominios Unión a DNA

Dominio Cremallera de Leu. Unión a DNA

Dominio Dedo de Zinc

Hélice de reconocimiento de DNA