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Abstract: In statistics it is conventional to assume that the observations are normal. The entire statistical framework is 

grounded on this assumption and if this assumption is violated the inference breaks down. For this reason it is essential to check 

or test this assumption before any statistical analysis of data. In this paper we provide a brief review of commonly used tests for 

normality. We present both graphical and analytical tests here. Normality tests in regression and experimental design suffer from 

supernormality. We also address this issue in this paper and present some tests which can successfully handle this problem. 
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1. Introduction 

In all branches of knowledge it is necessary to apply 

statistical methods in a sensible way. In the literature statistical 

misconceptions are conventional. The most commonly used 

statistical methods are correlation, regression and 

experimental design. But all of them are based on one basic 

assumption, that the observation follows normal (Gaussian) 

distribution. So it is assumed that the populations from where 

the samples are collected are normally distributed. For this 

reason the inferential methods require checking the normality 

assumption. 

In the last hundred years, attitudes towards the assumption 

of a Normal distribution in statistical models have varied from 

one extreme to another. To quote Pearson (1905) ‘Even 

towards the end of the nineteenth century not all were 

convinced of the need for curves other than normal.’ By the 

middle of this century Geary (1947) made this comment 

`Normality is a myth; there never was and never will be a 

normal distribution.' This might be an overstatement, but the 

fact is that non-Normal distributions are more prevalent in 

practice than formerly assumed. 

Gnanadesikan (1977) pointed out, `the effects on classical 

methods of departure from normality are neither clearly nor 

easily understood.' Nevertheless, evidence is available that 

shows such departures can have unfortunate effects in a 

variety of situations. In regression problems, the effects of 

departure from normality in estimation were studied by Huber 

(1973). He pointed out that, under non-Normality it is difficult 

to find necessary and sufficient conditions such that all 

estimates of the parameters are asymptotically normal. In 

testing hypotheses, the effect of departure from normality has 

been investigated by many statisticians. A good review of 

these investigations is available in Judge et al. (1985). When 

the observations are not normally distributed, the associated 

normal and chi-square tests are inaccurate and consequently 

the t and F tests are not generally valid in finite samples. 

However, they have an asymptotic justification. The sizes of t 

and F tests appear fairly robust to deviation from normality 

[see Pearson and Please (1975)]. This robustness of validity is 

obviously an attractive property, but it is important to 

investigate the response of tests' power as well as size to 

departure from normality. Koenker (1982) pointed out that the 

power of t and F tests is extremely sensitive to the 

hypothesized distribution and may deteriorate very rapidly as 

the distribution becomes long-tailed. Furthermore, Bera and 

Jarque (1982) have found that homoscedasticity and serial 

independence tests suggested for normal observations may 

result in incorrect conclusions under non-normality. It may be 

also essential to have proper knowledge of observations in 

prediction and in confidence limits of predictions. Most of the 

standard results of this particular study are based on the 

normality assumption and the whole inferential procedure 

may be subjected to error if there is a departure from this. In 
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all, violation of the normality assumption may lead to the use 

of suboptimal estimators, invalid inferential statements and 

inaccurate predictions. So for the validity of conclusions we 

must test the normality assumption. The main objective of this 

paper is to accumulate the procedures by which we can 

examine normality assumption. There is now a very large 

body of literature on tests for Normality and many textbooks 

contain sections on the topic. Mardia (1980) and D'Agostino 

(1986) gave excellent reviews of these tests. We consider in 

this paper a few of them which are selected mainly for their 

good power properties. The prime objective of this paper is to 

distinguish different types of normality tests for different areas 

of statistics. For the moment practitioners indiscriminantly 

apply normality tests. But in this paper we will show tests 

developed for univariate independent samples should not be 

readily applied for regression and design of experiments 

because of the supernormality problem. We try to categorize 

the normality tests in several classes although we recognize 

the fact that there are many more tests (not considered here) 

which may not come under these categories. This consists of 

both graphical plots and analytical test procedures. 

2. Graphical Method 

Any statistical analysis enriched by including appropriate 

graphical checking of the observation. To quote Chambers et 

al. (1983) ‘Graphical methods provide powerful diagnostic 

tools for confirming assumptions, or, when the assumptions 

are not met, for suggesting corrective actions. Without such 

tools, confirmation of assumptions can be replaced only by 

hope.’ Some statistical plots such as scatter plots, residual 

plots are advised for checking or diagnostic statistical method. 

For goodness of fit and distribution curve fitting graphical 

plots are necessary and give ideas about pattern. Existing 

testing methods give an objective decision of normality. But 

these do not provide general hint about cause of rejecting a 

null hypothesis. So, we are interested to present different types 

plot for normality checking as well as various testing 

procedures of it. Generally histograms, stem-and-leaf plots, 

box plots, percent-percent (P-P) plots, quantile-quantile (Q-Q) 

plots, plots of the empirical cumulative distribution function 

and other variants of probability plots have most application 

for normality assumption checking. 

2.1. Histogram 

The easiest and simplest graphical plot is the histogram. 

The frequency distribution in which the observed values are 

plotted against their frequency, states a visual estimation 

whether the distribution is bell shaped or not. At the same, 

time it provides indication about insights gap in the data and 

outliers. Also it gives idea about skewness or symmetry. 

Data that can be represented by this type of ideal, 

bell-shaped curve as shown in the first graph are said to have a 

normal distribution or to be normally distributed. Of course 

for the second graph the data are not normally distributed. 

 

Figure 1. Histogram shows the data are normally distributed. 

 

Figure 2. Histogram shows the data are not normally distributed. 

2.2. Stem-and-Leaf Plot 

Stem-and-leaf display states identical knowledge as like 

histogram but observation appeared with their identity seems 

they do not lose their any information about original data. Like 

histogram, they show frequency of observations along with 

median value, highest and lowest values of the distribution, 

other sample percentiles from the display of data. There is a 

“stem” and a “leaf” for each values where the stems depicts a 

set of bins in which leaves are grouped and these leaves reflect 

bars like histogram. 

 

Figure 3. Stem-and-leaf plot shows the data are not normally distributed. 

The above stem-and-leaf plot of marks obtained by the 

students clearly shows that the data are not normally 

distributed. 
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2.3. Box-and-Whisker Plot 

It has another name as five number summary where it needs 

first quartile, second quartile or median, third quartile, 

minimum and maximum values to display. Here we try to plot 

our data in a box whose midpoint is the sample median, the top 

of the box is the third quartile (Q3) and the bottom of the box 

is the first quartile (Q1). The upper whisker extends to this 

adjacent value - the highest data value within the upper limit = 

Q3 + 1.5 IQR where the inter quartile range IQR is defined as 

IQR = Q3-Q1. Similarly the lower whisker extends to this 

adjacent value - the lowest value within the lower limit = Q1- 

1.5 IQR. 

 

Figure 4. Box-and-Whisker plot shows the data are not normally distributed. 

We consider an observation to be unusually large or small 

when it is plotted beyond the whiskers and they are treated as 

outliers. By this plot we can get clear indication about 

symmetry of data set. At the same time it gives idea about 

scatteredness of observations. Thus the normality pattern of 

the data is understood by this plot as well. 

The box plot presented in Figure 1 is taken from Imon and 

Das (2015). This plot clearly shows non-normal pattern of the 

data. It contains outlier and the data are not even symmetric 

which is, in fact, skewed to the right. 

2.4. Normal Percent-Percent Plot 

In statistics, a P–P plot (probability–probability plot or 

percent–percent plot) is a probability plot for assessing how 

closely two data sets agree, which plots the two cumulative 

distribution functions against each other. From this plot we get 

idea about outlier, skewnwss, kurtosis and for this reason it 

has become a very popular tool for testing the normality 

assumption. 

A P-P plot compares the empirical cumulative distribution 

function of a data set with a specified theoretical cumulative 

distribution function F(·). If it looks like straight line or there 

is no curve then it contains no outliers and the assumption 

thought to be fulfilled and if it shows another outlook than 

straight line (e. g. curve), the assumption surmised to be 

failed. 

Normal P-P plots presented in Figures 5 and 6 are taken 

from Imon (2015). The first plot shows a normality pattern 

and the second one exhibits non-normality and the existence 

of an outlier. 

 

Figure 5. Normal Percent-percent plot shows the data are normally distributed. 
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Figure 6. Normal percent-percent plot shows the data are non-normal. 

2.5. Normal Quantile-Quantile Plot 

A quantile-quantile(Q-Q)plot compares the quantiles of a 

data distribution with the quantiles of a standardized 

theoretical distribution from a specified family of distributions. 

A normal Q-Q plot is that which we can shaped by plotting 

quantiles of one distribution versus quantiles of normal 

distribution. When quantiles of two distributions are met, 

plotted dots face with the line y = x. If it shows curve size with 

slope rising from left to right, it indicates the data distribution 

is skewed to the right and curve size with slope decreasing 

from left to right, it exposes skewness is to the left for the 

distribution. By investigating in normal probability paper, a 

Q-Q plot can easily be produced by hand. The abscissa on 

probability paper is scaled in proportionally to the expected 

quantiles of a standard normal distribution so that a plot of (p, 

��� (p)) is linear. The abscissa limits typically run from 

0.0001 to 0.9999. The vertical scale is linear and does not 

require that the data be standardized in any manner; also 

available is probability paper that is scaled logarithmically on 

the y-axis for use in determining whether data is lognormally 

distributed. On probability paper, the pairs ( �� , ���� ) are 

plotted. For plots done by hand, the advantage of Q-Q plots 

done on normal probability paper is that percentiles and 

cumulative probabilities can be directly estimated, and, 

���(��) need not be obtained to create the plot. 

There is a great area of confusion between P-P plot and Q-Q 

plot and sometimes people think that they are synonymous. 

But there are three important differences in the way P-P plots 

and Q-Q plots are constructed and interpreted:  

� The construction of a Q-Q plot does not require that the 

location or scale parameters of F(·) be specified. The 

theoretical quantiles are computed from a standard 

distribution within the specified family. A linear point 

pattern indicates that the specified family reasonably 

describes the data distribution, and the location and scale 

parameters can be estimated visually as the intercept and 

slope of the linear pattern. In contrast, the construction of 

a P-P plot requires the location and scale parameters of 

F(·) to evaluate the cdf at the ordered data values.  

� The linearity of the point pattern on a Q-Q plot is 

unaffected by changes in location or scale. On a P-P plot, 

changes in location or scale do not necessarily preserve 

linearity.  

� On a Q-Q plot, the reference line representing a 

particular theoretical distribution depends on the 

location and scale parameters of that distribution, having 

intercept and slope equal to the location and scale 

parameters. On a P-P plot, the reference line for any 

distribution is always the diagonal line y = x.  

Consequently, you should use a Q-Q plot if your objective 

is to compare the data distribution with a family of 

distributions that vary only in location and scale, particularly 

if you want to estimate the location and scale parameters from 

the plot. 

An advantage of P-P plots is that they are discriminating in 

regions of high probability density, since in these regions the 

empirical and theoretical cumulative distributions change 

more rapidly than in regions of low probability density. For 

example, if you compare a data distribution with a particular 

normal distribution, differences in the middle of the two 

distributions are more apparent on a P-P plot than on a Q-Q 

plot. 

2.6. Empirical Cumulative Distribution Function Plot 

An empirical CDF plot performs a similar function as a 

probability plot. However, unlike a probability plot, the 

empirical CDF plot has scales that are not transformed and the 

fitted distribution does not form a straight line, rather it yields 

an S-shape curve under normality. The empirical cumulative 

probabilities close to this S-shape curve satisfies the normality 

assumption.  
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Figure 7. Empirical cumulative distribution function plot shows the data are 

normally distributed. 

2.7. Detrended Probability Plot 

In statistics, a graph of the differences between observed 

and expected values, the expected values being based on the 

assumption of a normal distribution. If the observed scores are 

normally distributed, then the points should cluster in a 

horizontal band close to zero without any discernible pattern. 

This is also known as the detrended Q-Q plot since here (���� - 

	
Φ��(��)) is plotted against the plotting position ��  or the 

expected quantile Φ������ for some estimate of the standard 

deviation 	
 . If the observations come from a normal 

distribution, the result should be a straight line with zero slope. 

 

Figure 8. Detrended normal Q-Q plot. 

3. Analytical Test Procedures 

Various types of descriptive measures like moments, 

cumulants, coefficients of skewness and kurtosis, mean 

deviation, range of the sample etc. and empirical distribution 

function have been proposed for use in tests for normality, but 

only a few of them are frequently used in practice. Here we 

categorize tests into two groups: tests based on empirical 

distribution function (EDF) test and tests based on descriptive 

measures. 

3.1. Empirical Distribution Function (EDF) Tests 

Based on the measure of discrepancy between empirical 

and hypothesized distributions generally mentioned as 

empirical distribution function we can define the following 

tests. 

3.1.1. Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov test was first derived by 

Kolmogorov (1933) and later modified and proposed as a test 

by Smirnov (1948). The test statistic is 

D = ��� ǀ��(X) – F(X, µ, σ)ǀ           (1) 

where, F(X, µ, σ) is the theoretical cumulative distribution 

function of the normal distribution function and ��(X)is the 

empirical distribution function of the data. If it gives large 

values of D then it indicates the data are not normal. When 

population parameters (µ and σ) are unknown then sample 

estimates are used instead of parameter values. 

3.1.2. Shapiro-Wilk Test 

The Shapiro-Wilk test is one of the most popular tests for 

normality assumption diagnostics which has good properties 

of power and it based on correlation within given observations 

and associated normal scores. The Shapiro-Wilk test statistic 

is derived by Shapiro and Wilk (1965). The form of the test 

statistic is 

( )( )
( )

2

2

i ia y
W

y y
=

−

∑

∑
                 (2) 

where ( )iy is the i-th order statistics and ia  is the i-th 

expected value of normalized order statistics. For 

independently and identically distributed observations, the 

values of ia  can be obtained from the table presented by 

Shapiro and Wilk (1965) for sample sizes up to 50. W can be 

expressed as a square of the correlation coefficient between 

ia and ( )iy . So W is location and scale invariant and is always 

less than or equal to 1. In the plot of ( )iy  against ia  an exact 

straight line would lead to W very close to 1. So if W is 

significantly less than 1, the hypothesis of Normality will be 

rejected. 
Although the Shapiro-Wilk W test is very popular, it 

depends on availability of values of ia , and for large sample 

cases their computation may be much more complicated. 

Some minor modifications to the W test have been suggested 

by Shapiro and Francia (1972), Weisberg and Bingham (1975) 

and Royston (1982). An alternative test of the same nature for 

samples larger than 50 is designed by D'Agostino (1971). 

3.1.3. Anderson-Darling Test 

Stephens (1974) proposed a test based on empirical 

distribution by extending the work of Anderson and Darling 

(1952). This test is generally known as Anderson-Darling 

normality test. For normally distributed random observations 
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( )iy  with mean µ  and variance 2σ , the Anderson-Darling 

test statistic is given by 
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Where ( )( )[ ]σµ ˆ/ˆˆ −Φ=
ii

yz  and ( )•Φ  is the 

distribution function of an N (0,1) random variable. Stephens 

(1974) provided the percentage points for this test. 

3.2. Tests Based on Descriptive Measures 

Fisher (1930) proposed using cumulants. Using his result, 

Pearson (1930) obtained the first four moments of the 

sampling distribution of skewness and kurtosis, under the null 

hypothesis of normality. He used those results to develop 

criteria for testing normality by using sample values of 

coefficients of skewness and kurtosis separately. The ratio of 

mean deviation to standard deviation [see Geary (1935)] and 

ratio of sample range to standard deviation [see David, Hartley, 

and Pearson (1954)] were also proposed for the same purpose. 

Based on moments the most popular tests are 

D’Agostino-Pearson Omnibus test and Jarqua-Bera test. 

3.2.1. D’Agostino-Pearson Omnibus Test 

To assessing the symmetry or asymmetry generally 

skewness is measured and to evaluate the shape of the 

distribution kurtosis is overlooked. D’Agostino-Pearson 

(1973) test standing on the basis of skewness and kurtosis test 

and these are also assessing through moments. The DAP 

statistic is 

�� = ������� + ������               (4) 

where Z �����  and Z( �� ) are the normal approximation 

equivalent to ��� and �� are sample skewness and kurtosis 

respectively. This statistic follows a chi-squared distribution 

with two degrees of freedom if the population is from normal 

distribution. A large value of �� leads to the rejection of the 

normality assumption. 

3.2.2. Jarqua-Bera Test 

The Jarqua-Bera test was originally proposed by Bowman 

and Shenton (1975). They combined squares of normalized 

skewness and kurtosis in a single statistic as follows 

JB = [n / 6] [ 2 2( 3)S K+ − / 4]          (5) 

This normalization is based on normality since S = 0 and K 

= 3 for a normal distribution and their asymptotic variances 

are 6/n and 24/n respectively. Hence under normality the JB 

test statistic follows also a chi-squared distribution with two 

degrees of freedom. A significantly large value of JB leads to 

the rejection of the normality assumption. 

4. Supernormality and Rescaled 

Moments Test 

Test procedures discussed so far can be applied for testing 

normality of the distribution from which we have collected the 

observations. Here the normality test is employed on an 

observed data set. But in regression and design problems, 

since the true errors are unobserved, it is a common practice to 

use the residuals as substitutes for them in tests for normality. 

The residuals have several drawbacks which have made 

statisticians question [see Cook and Weisberg (1982)] whether 

they can be used as proper substitutes for the true errors or not. 

In testing normality, all test statistics have been designed on 

the basis of independent and identically distributed random 

observations. An immediate problem of using residuals in 

them is that even when the true errors are independent, their 

corresponding residuals are always correlated. Residuals also 

have the problem of not possessing constant variance while 

the true errors do so. They also have the disadvantage that 

their probability distribution is always closer to normal form 

than is the probability distribution of the true errors, when the 

errors are not normal. This problem is generally known as the 

supernormality effect of the residuals. 

Since the question has been raised about the use of residuals 

as proper estimates of the errors because of supernormality, 

this practice of using them in test procedures looks 

questionable. But, most important, the induced normality of 

the residuals makes a test of normality of the true errors based 

on residuals logically very weak. 

 

Figure 9. Normal probability plot for lognormal data. 

The above graph is taken from Imon (2003a). Although the 

true errors are lognormal, the corresponding residuals accept 

normality. Because of this effect most of the normality tests 

based on residuals possess very poor power. To overcome this 

problem Imon (2003b) suggests a slight adjustment to the JB 

statistic to make it more suitable for the regression problems. 

His proposed statistic based on rescaled moments (RM) of 
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ordinary least squares residuals is defined as 

RM = [n 3c  / 6] [ 2 2( 3)S c K+ − / 4]          (6) 

where c = n/(n – k), k is the number of independent variables in 

a regression model. Both the JB and the RM statistic follow a 

chi square distribution with 2 degrees of freedom. If the values 

of these statistics are greater than the critical value of the chi 

square, we reject the null hypothesis of normality. Rana, 

Habshah, and Imon (2009) proposed a robust version of the 

RM test for regression and design of experiments. 

5. Conclusions 

It is essential to assess normality of a data before any formal 

statistical analysis. Otherwise we might draw erroneous 

inference and wrong conclusions. Normality can be assessed 

both visually and through normality tests. Most of the 

statistical packages automatically produce the PP and QQ 

plots. Since graphical tests are very much subjective use of 

analytical test is highly recommended. Among the analytical 

tests the Shapiro-Wilk test is provided by the SPSS software 

and possesses very good power properties. However, the 

Jarque-Bera test has become more popular to the practitioners 

especially in economics and business. But both Shapiro-Wilk 

and Jarque-Bera tests are not appropriate when we test 

normality of residuals in regression and/or design of 

experiments. We recommend using the rescaled moments test 

in this regard. 
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