

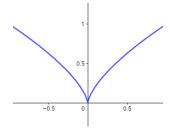
ASIGNATURA Cálculo I AÑO 2018 TEMA 1

1. Indique Verdadero (V) o Falso (F) según corresponda. Justifique las respuestas falsas mediante contraejemplo o respuesta correcta. Se considera el puntaje sólo si la respuesta está debidamente justificada.

Enunciado	V	F
Un punto crítico de una función f es un número $x=c$ en el dominio de f tal que $f'(c)=0$ o $f'(c)$ no existe.	X	
Si f es continua sobre $[a,b]$, entonces f alcanza un valor máximo absoluto f (c) y un valor mínimo absoluto f (d) en algunos números c y d en (a,b) .		X
Si f tiene un valor mínimo absoluto en $x = c$, entonces $f'(c) = 0$.		X
Existe una función f continua en $[1,3]$ tal que $f(1)=-2$, $f(3)=0$ y $f'(x)>1$ para toda $x\in(1,3)$.		X
Si $f''(2) = 0$, entonces $(2, f(2))$ es un punto de inflexión de la curva $y = f(x)$.		X
Sea f derivable en I , si $f'(x)$ es creciente en I entonces la gráfica de f es cóncava hacia abajo.		X

Respuestas (se considera puntaje si se justifican las respuestas falsas adecuadamente)

- a. VERDADERO. La definición de punto crítico es correcta y completa.
- b. **FALSO.** Por teorema de valores extremos para funciones continuas en un intervalo cerrado, el máximo o mínimo se puede alcanzar en los extremos del intervalo y no sólo en puntos interiores. Lo correcto sería "en algunos c y d en [a, b]".
- c. **FALSO.** Puede tener un valor mínimo en x=c sin que exista derivada. Ejemplo: $y = x^{2/3}$ tiene un mínimo en x = 0 pero no hay derivada allí dado que las derivadas laterales tienden a $-\infty$.



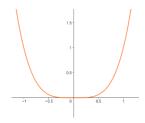
d. **FALSO**. Por Teorema del valor medio de Lagrange, dado que f es continua en [1,3] y derivable en (1,3), y f(1) = -2, f(3) = 0, se tiene que:

$$f'(c) = \frac{f(b) - f(a)}{b - a} = \frac{f(3) - f(1)}{3 - 1} = \frac{0 - (-2)}{2} = 1$$

Por lo tanto, al menos hay un valor c para ese intervalo abierto en que f' no es mayor que 1.

e. **FALSO.** La condición f''(x) = 0 es necesaria pero no suficiente, dado que puede ocurrir que la derivada segunda sea cero pero no haber punto de inflexión allí. Ejermplo: $f(x) = x^4$, su segunda derivada es $f'(x) = 12x^2$. Si se iguala a cero se obtiene que para x=0 un posible punto de inflexión pero en realidad hay un mínimo.

ASIGNATURA Cálculo I AÑO 2018 TEMA 1



- f. **FALSO**. Si f' es creciente, la gráfica es cóncava hacia arriba y si f' es decreciente, la gráfica es cóncava hacia abajo.
- 2. Dada $f(x) = \frac{(x+1)^2}{x^2+1}$ determine:
 - a. Asíntotas

<u>Asíntota vertical:</u> no tiene dado que no hay ningún valor para el cual el denominador se anule, por lo tanto la función es continua en todo su dominio.

Asíntota horizontal:

$$\lim_{x \to \pm \infty} \frac{x^2 + 2x + 1}{x^2 + 1} = \lim_{x \to \infty} \frac{\frac{x^2 + 2x + 1}{x^2}}{\frac{x^2 + 1}{x^2}} = \lim_{x \to \infty} \frac{1 + 2/x + 1/x^2}{1 + 1/x^2} = 1$$

<u>Asíntota oblicua:</u> no posee dado que el grado del polinomio del numerador y del denominador son iguales y no difieren en una unidad.

b. Puntos críticos e intervalos de crecimiento y decrecimiento

$$f(x) = \frac{(x+1)^2}{x^2+1}$$

$$f'(x) = \frac{2(x+1)(x^2+1) - (x+1)^2 \cdot 2x}{(x^2+1)^2} = \frac{2(x+1)(x^2+1-x^2-x)}{(x^2+1)^2} = \frac{2(x+1)(1-x)}{(x^2+1)^2} = 0$$

$$2(x+1)(1-x) = 0 \Rightarrow x_1 = -1 \ y \ x_2 = 1$$
 Puntos críticos

Intervalo	(-∞, -1)	(-1,1)	(1,∞)
Evaluación f'	$f^{'}(-2) = -6/25$	$f^{'}(0) = +2$	$f^{'}(2) = -6/25$
Signo f'	-	+	-
Comportamiento de f	Decrece	Crece	Decrece

Intervalo de crecimiento: (-1, 1)

Intervalos de decrecimiento: $(-\infty, -1), (1, \infty)$

c. Extremos relativos y absolutos:

$$f(-1) = \frac{(-1+1)^2}{(-1)^2+1} = 0$$

Mínimo absoluto y relativo (es el menor valor que toma f en el intervalo, y hacia la izquierda de -1 decrece y hacia la derecha crece)

ASIGNATURA

Cálculo I

AÑO

2018

TEMA

1

$$f(1) = \frac{(1+1)^2}{(1)^2 + 1} = 2$$

Máximo absoluto y relativo (es el valor más grande que toma f en el intervalo, y hacia la izquierda de 1 crece y hacia la derecha decrece)

d. Intervalos de concavidad y puntos de inflexión

$$f'(x) = \frac{2(1-x^2)}{(x^2+1)^2}$$

$$f''(x) = \frac{-4x(x^2+1)^2 - 2(1-x^2)2(x^2+1)2x}{(x^2+1)^4} = \frac{-4x(x^2+1)^2 - 8x(1-x^2)(x^2+1)}{(x^2+1)^4}$$

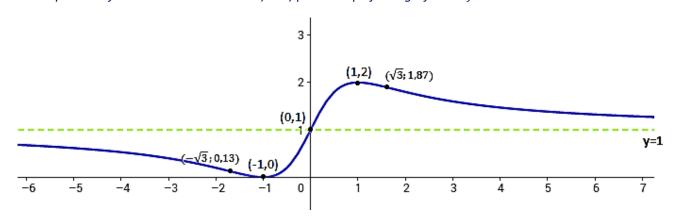
$$= \frac{-4x(x^2+1)[x^2+1+2(1-x^2)]}{(x^2+1)^4} = \frac{-4x(-x^2+3)}{(x^2+1)^3}$$

$$f''(x) = -4x(-x^2 + 3) = 0 \implies x_1 = -\sqrt{3}; x_2 = 0; x_2 = \sqrt{3}$$
 Puntos de inflexión

Intervalo	$\left(-\infty,-\sqrt{3}\right)$	$\left(-\sqrt{3},0\right)$	$(0,\sqrt{3})$	$(\sqrt{3}, \infty)$
Evaluación f"	f''(-2) = -8/125	f''(-1) = 1	f''(1) = -1	f''(2) = 8/125
Signo f"	-	+	-	+
Comportamiento de f	Cóncava hacia abajo	Cóncava hacia arriba	Cóncava hacia abajo	Cóncava hacia arriba

Cóncava hacia arriba: $(-\sqrt{3},0), (\sqrt{3},\infty)$ Cóncava hacia abajo: $(-\infty,-\sqrt{3}), (0,\sqrt{3})$

e. Emplee la información de los incisos a) al c) para bosquejar la gráfica de f



3. Calcule la derivada de: $y = [sen(x^2 - 2x)]^{\frac{1}{x-1}}$ (exprese el resultado en función de x)

$$y = [sen(x^2 - 2x)]^{\frac{1}{x-1}}$$
 Aplique logaritmo natural a ambos miembros.

$$lny = \frac{1}{x-1} ln[sen(x^2 - 2x)]$$
 Derive miembro a miembro, aplicando regla de la cadena y derivación implícita.

$$\frac{1}{y}y' = -\frac{1}{(x-1)^2}\ln[sen(x^2 - 2x)] + \frac{1}{x-1}\frac{1}{sen(x^2 - 2x)}cos(x^2 - 2x)(2x - 2x)$$

Opere algebraicamente y agrupe factores convenientemente.

ASIGNATURA

Cálculo I

AÑO

2018

TEMA

1

$$\frac{1}{y}y' = -\frac{\ln[sen(x^2-2x)]}{(x-1)^2} + 2\cot(x^2-2x)$$

Despeie v'

$$y' = \left\{ -\frac{\ln[sen(x^2 - 2x)]}{(x - 1)^2} + 2\cot(x^2 - 2x) \right\} \left[sen(x^2 - 2x) \right]^{\frac{1}{x - 1}}$$

4. Dadas las curvas $x^2 + y^2 = 4$ y $x^2 = 3y^2$, demuestre que las mismas son ortogonales en al menos un punto.

Para demostrar si son ortogonales es necesario verificar primero si se interceptan en algún punto:

Se despeja de una de las ecuaciones una de las variables: $y^2 = \frac{x^2}{3}$ y se reemplaza en la otra:

$$x^{2} + y^{2} = 4 \Rightarrow x^{2} + \frac{x^{2}}{3} = 4 \Rightarrow \frac{4}{3}x^{2} = 4 \Rightarrow x = \pm\sqrt{3} \text{ e } y = \pm 1$$

Las curvas se interceptan en $P_1(\sqrt{3}, 1)$; $P_2(\sqrt{3}, -1)$; $P_3(-\sqrt{3}, 1)$; $P_4(-\sqrt{3}, -1)$

Ahora se verifica si son ortogonales calculando sus pendientes en esos puntos, por lo tanto, se debe derivar implícitamente:

$$x^2 + y^2 = 4$$

$$2x + 2yy' = 0 \Rightarrow y' = \frac{-2x}{2y} = -\frac{x}{y}$$

$$x^2 = 3y^2$$

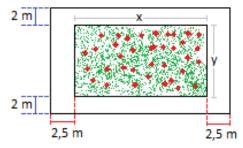
$$2x = 6yy' \Rightarrow y' = \frac{2x}{6y} = \frac{x}{3y}$$

Ahora se evalúan ambas derivadas en los distintos puntos: (Basta con que se demuestre que son ortogonales en al menos uno de los puntos).

- $\begin{array}{ll} \bullet & \text{ En } P_1 \left(\sqrt{3}, 1 \right) : y' |_{\left(\sqrt{3}, 1 \right)} = m_1 = \frac{\sqrt{3}}{1} = \sqrt{3} \qquad \text{y} \qquad y' |_{\left(\sqrt{3}, 1 \right)} = m_2 = \frac{\sqrt{3}}{3.1} = \frac{\sqrt{3}}{3} \\ & \text{ Como } m_1 * m_2 = \sqrt{3} * \frac{\sqrt{3}}{3} = \mathbf{1} \ \Rightarrow \text{ son perpendiculares u ortogonales} \\ \end{array}$
- En $P_2(\sqrt{3}, -1)$: $y'|_{(\sqrt{3}, -1)} = m_1 = -\frac{\sqrt{3}}{-1} = \sqrt{3}$ y $y'|_{(\sqrt{3}, -1)} = m_2 = \frac{\sqrt{3}}{3 \cdot (-1)} = -\frac{\sqrt{3}}{3}$ Como $m_1 * m_2 = \sqrt{3} * \left(-\frac{\sqrt{3}}{3}\right) = -1$ \Rightarrow son perpendiculares u ortogonales
- En $P_3\left(-\sqrt{3},1\right)$: $y'|_{\left(-\sqrt{3},1\right)} = m_1 = -\frac{-\sqrt{3}}{1} = \sqrt{3}$ y $y'|_{\left(-\sqrt{3},1\right)} = m_2 = \frac{-\sqrt{3}}{3.1} = -\frac{\sqrt{3}}{3}$ Como $m_1*m_2 = \sqrt{3}*\left(-\frac{\sqrt{3}}{3}\right) = -1$ \Rightarrow son perpendiculares u ortogonales
- En $P_3\left(-\sqrt{3},-1\right)$: $y'|_{\left(-\sqrt{3},-1\right)}=m_1=-\frac{-\sqrt{3}}{(-1)}=-\sqrt{3}$ y $y'|_{\left(-\sqrt{3},-1\right)}=m_2=\frac{-\sqrt{3}}{3.(-1)}=\frac{\sqrt{3}}{3}$ Como $m_1*m_2=-\sqrt{3}*\frac{\sqrt{3}}{3}=-1$ \Rightarrow son perpendiculares u ortogonales

ASIGNATURA Cálculo I AÑO 2018 TEMA 1

- 5. Un granjero tiene un campo de $180\ m^2$ y desea cultivar frutillas. ¿Qué dimensiones darán la mayor área cultivable si debe dejar callejones de $2,5\ m$ de ancho hacia el Oeste y Este, y callejones de $2\ m$ hacia el Norte y Sur de dicho campo para poder ingresar. (*Verifique el resultado empleando el criterio correspondiente*).
 - a. Identifique variables:
 - x: medida del largo de la superficie a cultivar
 - y: medida del ancho de la superficie a cultivar
 - b. Dibuje un esquema del problema:



c. Plantee ecuaciones que modelan el problema:

$$\begin{cases} A = x. y & (1) \\ S = (x+5)(y+4) & (2) \end{cases}$$

d. Resuelva:

(1) es la ecuación a optimizar, en este caso, a maximizar. (2) es la ecuación que contiene dato por lo que se despejará de ella a una de las variables:

Se despeja de (2) a y:
$$y = \frac{s}{x+5} - 4 = \frac{180}{x+5} - 4$$

Se reemplaza en (1):

$$A(x,y) = x \cdot y = x \left(\frac{180}{x+5} - 4\right) = \frac{180x}{x+5} - 4x$$
$$A(x) = \frac{180x}{x+5} - 4x$$

Se deriva la ecuación obtenida respecto de \boldsymbol{x} y se iguala a cero para optimizar

$$\frac{dA(x)}{dx} = A'(x) = \frac{180(x+5) - 180x}{(x+5)^2} - 4 = \frac{180x + 900 - 180x}{(x+5)^2} - 4 = 0$$

$$\frac{180x + 900 - 180x}{(x+5)^2} = 4 \Rightarrow 225 = x^2 + 10x + 25 \Rightarrow 0 = x^2 + 10x - 200 \Rightarrow x_1 = -20 \text{ y } x_2 = 10$$

Dado que se trata de una longitud se toma sólo el valor positivo.

Se reemplaza el valor obtenido para encontrar y: $y = \frac{180}{x+5} - 4 = \frac{180}{10+5} - 4 = 8 \Rightarrow y = 8$ Las dimensiones que darán la mayor área cultivable serán 10 m de largo por 8 m de ancho.

e. Verifique por el criterio de la 2da derivada:

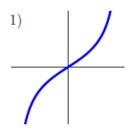
$$A'(x) = \frac{900}{(x+5)^2}$$
$$A''(x) = -\frac{1800}{(x+5)^3}$$

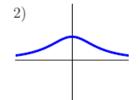
La derivada 2° dará negativa para cualquier valor de x, dado que este siempre será positivo. Por lo tanto, si f''(x) < 0 para x = c existe un máximo en x = c.

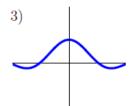
ASIGNATURA Cálculo I AÑO 2018 TEMA 1

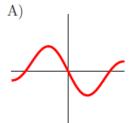
6. Dadas las funciones f representadas en 1), 2), 3), las derivadas primeras f' en A), B), C) y las derivadas segundas f'' en a), b), c) indique cómo se corresponden entre sí.

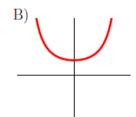
Función <i>f</i>	1)	2)	3)
1º Derivada <i>f'</i>	В	С	Α
2º Derivada f"	a)	c)	b)

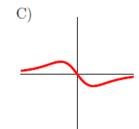


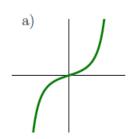


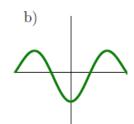


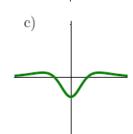












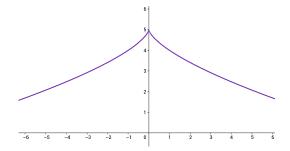
ASIGNATURA Cálculo I AÑO 2018 TEMA 2

1. Indique Verdadero (V) o Falso (F) según corresponda. Justifique las respuestas falsas mediante contraejemplo o respuesta correcta. Se considera el puntaje sólo si la respuesta está debidamente justificada.

Enunciado	٧	F
Un punto crítico de una función f es un número $x=c$ en el dominio de f tal que $f'(c)=0$.		X
Si $f'(x) = 0$ y $f'''(x) < 0$ en $x = 4$ se puede asegurar que f tiene un máximo en $x = 4$.		X
Si f es continua en $[-1,1]$, derivable en $(-1,1)$ y $f(-1)=f(1)$, entonces existe al menos un número c tal que $ c <1$ y $f'(c)=0$.	X	
Un punto de inflexión P es un punto en el cual $f'(x) > 0$ hacia la derecha del mismo y $f'(x) < 0$ hacia la izquierda o viceversa.		X
Sea f derivable en I , si $f'(x)$ es creciente en I entonces la gráfica de f es cóncava hacia arriba.	X	
Si f tiene un valor máximo absoluto en $x = c$, entonces $f'(c) = 0$.		X

Respuestas (Se considera puntaje si se justifican las respuestas falsas adecuadamente)

- a. **FALSO.** Un punto crítico de una función f es un número x = c en el dominio de f tal que f'(c) = 0 o f'(c) no existe.
- b. **FALSO.** El criterio de la derivada tercera sólo se utiliza para asegurar la existencia o no de un punto de inflexión. Si f'(x) = 0 y f''(x) < 0 en x = 4 se puede asegurar que f tiene un máximo en x = 4.
- c. **VERDADERO.** Se cumplen todas las hipótesis Teorema de Rolle: f continua en [a, b], derivable en (a, b) y f(a) = f(b), entonces existe al menos un número c tal que $c \in (a, b)$ y f'(c) = 0.
- d. **FALSO.** Un punto de inflexión P es un punto en el cual f'(x) > 0 hacia la derecha y hacia la izquierda del mismo, ó bien f'(x) < 0 hacia la derecha y hacia la izquierda del mismo. En otras palabras f'(x) es creciente hacia la derecha y hacia la izquierda del punto de inflexión o bien f'(x) es decreciente hacia la izquierda y hacia la derecha.
- e. **VERDADERO.** Si f'(x) es creciente entonces f''(x) > 0 y la función es cóncava hacia arriba.
- f. **FALSO.** Puede tener un valor máximo en x=c sin que exista derivada. Ejemplo: $y = -x^{\frac{2}{3}} + 5$ tiene un máximo en x = 0 pero no hay derivada allí dado que las derivadas laterales tienden a $+\infty$.



ASIGNATURA Cálculo I AÑO 2018 TEMA 2

2. Dada $f(x) = \frac{(x-1)^2}{x^2+1}$ determine:

a. Asíntotas

<u>Asíntota vertical:</u> no tiene dado que no hay ningún valor para el cual el denominador se anule, por lo tanto la función es continua en todo su dominio.

Asíntota horizontal:

$$\lim_{x \to \pm \infty} \frac{x^2 - 2x + 1}{x^2 + 1} = \lim_{x \to \infty} \frac{\frac{x^2 - 2x + 1}{x^2}}{\frac{x^2 + 1}{x^2}} = \lim_{x \to \infty} \frac{1 - 2/x + 1/x^2}{1 + 1/x^2} = 1$$

<u>Asíntota oblicua:</u> no posee dado que el grado del polinomio del numerador y del denominador son iguales y no difieren en una unidad.

b. Puntos críticos e intervalos de crecimiento y decrecimiento

$$f(x) = \frac{(x-1)^2}{x^2+1}$$

$$f'(x) = \frac{2(x-1)(x^2+1) - (x-1)^2 \cdot 2x}{(x^2+1)^2} = \frac{2(x-1)(x^2+1-x^2+x)}{(x^2+1)^2} = \frac{2(x-1)(1+x)}{(x^2+1)^2} = 0$$

$$2(x-1)(1+x) = 0 \Rightarrow x_1 = -1 \ y \ x_2 = 1$$
 Puntos críticos

Intervalo	(-∞, -1)	(-1,1)	(1,∞)
Evaluación f'	$f^{'}(-2) = +6/25$	$f^{'}(0) = -2$	$f^{'}(2) = +6/25$
Signo f'	+	-	+
Comportamiento de f	Crece	Decrece	Crece

Intervalos de Crecimiento: $(-\infty, -1), (1, \infty)$

Intervalo de decrecimiento: (-1,1)

c. Extremos relativos y absolutos:

$$f(-1) = \frac{(-1-1)^2}{(-1)^2 + 1} = 2$$

Máximo absoluto y relativo (es el valor más grande que toma f en el intervalo, y hacia la izquierda de -1 crece y hacia la derecha decrece)

$$f(1) = \frac{(1-1)^2}{(1)^2 + 1} = 0$$

Mínimo absoluto y relativo (es el menor valor que toma f en el intervalo, y hacia la izquierda de 1 decrece y hacia la derecha crece)

d. Intervalos de concavidad y puntos de inflexión

$$f'(x) = \frac{2(x^2 - 1)}{(x^2 + 1)^2}$$

ASIGNATURA

Cálculo I

AÑO

2018

TEMA

2

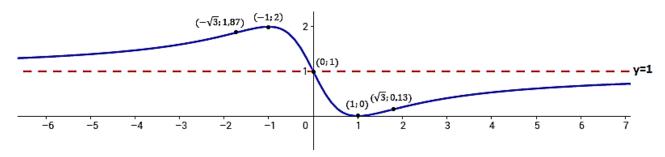
$$f''(x) = \frac{4x(x^2+1)^2 - 2(x^2-1)2(x^2+1)2x}{(x^2+1)^4} = \frac{4x(x^2+1)^2 - 8x(x^2-1)(x^2+1)}{(x^2+1)^4}$$
$$= \frac{4x(x^2+1)[x^2+1 - 2(x^2-1)]}{(x^2+1)^4} = \frac{4x(-x^2+3)}{(x^2+1)^3}$$

$$f''(x) = -4x(-x^2 + 3) = 0 \implies x_1 = -\sqrt{3}; x_2 = 0; x_2 = \sqrt{3}$$
 Puntos de inflexión

Intervalo	$\left(-\infty, -\sqrt{3}\right)$	$\left(-\sqrt{3},0\right)$	$(0,\sqrt{3})$	$(\sqrt{3}, \infty)$
Evaluación f''	$f^{''}(-2) = 6/25$	$f^{''}(-1)=-1$	$f^{''}(1)=1$	$f^{''}(2) = 6/25$
Signo f"	+	-	+	-
Comportamiento de f	Cóncava hacia arriba	Cóncava hacia abajo	Cóncava hacia arriba	Cóncava hacia abajo

Cóncava hacia arriba: $\left(-\infty, -\sqrt{3}\right)$, $\left(0, \sqrt{3}\right)$ Cóncava hacia abajo: $\left(-\sqrt{3}, 0\right)$, $\left(\sqrt{3}, \infty\right)$

e. Emplee la información de los incisos a) al c) para bosquejar la gráfica de f



3. Calcule la derivada de: $y = \left[\cos\left(\frac{1}{2}x^2 - x\right)\right]^{\frac{1}{x-1}}$ (exprese el resultado en función de x)

$$y = \left[\cos\left(\frac{1}{2}x^2 - x\right)\right]^{\frac{1}{x-1}}$$

Aplique logaritmo natural a ambos miembros.

$$lny = \frac{1}{x-1} ln \left[cos \left(\frac{1}{2}x^2 - x \right) \right]$$

 $lny = \frac{1}{x-1} ln \left[cos \left(\frac{1}{2}x^2 - x \right) \right]$ Derive miembro a miembro, aplicando regla de la cadena y derivación

$$\frac{1}{y}y' = -\frac{1}{(x-1)^2} \ln \left[\cos \left(\frac{1}{2} x^2 - x \right) \right] + \frac{1}{x-1} \frac{1}{\cos \left(\frac{1}{2} x^2 - x \right)} \left[- \operatorname{sen} \left(\frac{1}{2} x^2 - x \right) \right] (x-1)$$

Opere algebraicamente y agrupe factores convenientemente.

$$\frac{1}{y}y' = -\frac{\ln\left[\cos\left(\frac{1}{2}x^2 - x\right)\right]}{(x-1)^2} - \tan\left(\frac{1}{2}x^2 - x\right)$$
 Despeje y

$$y' = \left\{ -\frac{\ln\left[\cos\left(\frac{1}{2}x^2 - x\right)\right]}{(x - 1)^2} - \tan\left(\frac{1}{2}x^2 - x\right) \right\} \left[\cos\left(\frac{1}{2}x^2 - x\right)\right] \frac{1}{x - 1}$$

ASIGNATURA Cálculo I AÑO 2018 TEMA 2

4. Dadas las curvas $x^2 + y^2 = 8$ y $8x^2 = y^2$, demuestre que las mismas son ortogonales en al menos un punto.

Para demostrar si son ortogonales es necesario verificar primero si se interceptan en algún punto: Se despeja de una de las ecuaciones una de las variables: $y^2 = 8x^2$ y se reemplaza en la otra:

$$x^{2} + y^{2} = 8 \Rightarrow x^{2} + 8x^{2} = 8 \Rightarrow 9x^{2} = 8 \Rightarrow x = \pm \frac{\sqrt{8}}{3} \text{ e } y = \pm \frac{8}{3}$$

Las curvas se interceptan en
$$P_1\left(\frac{\sqrt{8}}{3}, \frac{8}{3}\right)$$
; $P_2\left(\frac{\sqrt{8}}{3}, -\frac{8}{3}\right)$; $P_3\left(-\frac{\sqrt{8}}{3}, \frac{8}{3}\right)$; $P_4\left(-\frac{\sqrt{8}}{3}, -\frac{8}{3}\right)$

Ahora se verifica si son ortogonales calculando sus pendientes en esos puntos, por lo tanto, se debe derivar implícitamente:

$$x^2 + y^2 = 8$$

$$2x + 2yy' = 0 \Rightarrow y' = \frac{-2x}{2y} = -\frac{x}{y}$$

$$8x^2 = y^2$$

$$16x = 2yy' \Rightarrow y' = \frac{8x}{y} = \frac{8x}{y}$$

Ahora se evalúan ambas derivadas en los distintos puntos: Basta con que se demuestre que son ortogonales en al menos uno de los puntos.

• En
$$P_1\left(\frac{\sqrt{8}}{3},\frac{8}{3}\right)$$
: $y'|_{\left(\frac{\sqrt{8}}{3}\frac{8}{3}\right)} = m_1 = -\frac{\frac{\sqrt{8}}{3}}{\frac{8}{3}} = -\frac{\sqrt{8}}{8}$ $y \quad y'|_{\left(\frac{\sqrt{8}}{3}\frac{8}{3}\right)} = m_2 = \frac{8\sqrt{8}/3}{8/3} = \sqrt{8}$

Como $m_1*m_2=-\frac{\sqrt{8}}{8}*\sqrt{8}=-1 \Rightarrow$ Son perpendiculares u ortogonales

$$\begin{array}{ll} \bullet & \operatorname{En} P_2\left(\frac{\sqrt{8}}{3}, -\frac{8}{3}\right) : y'|_{\left(\frac{\sqrt{8}}{3}, -\frac{8}{3}\right)} = m_1 = -\frac{\frac{\sqrt{8}}{3}}{\left(-\frac{8}{3}\right)} = \frac{\sqrt{8}}{8} \quad \text{y} \qquad \qquad y'|_{\left(\frac{\sqrt{8}}{3}, -\frac{8}{3}\right)} = m_2 = \frac{8\sqrt{8}/3}{(-8/3)} = -\sqrt{8} \\ \operatorname{Como} m_1 * m_2 = \frac{\sqrt{8}}{8} * \left(-\sqrt{8}\right) = -1 \\ \end{array} \\ \Rightarrow \operatorname{Son perpendiculares u ortogonales}$$

$$\begin{array}{l} \bullet \quad \text{En $P_3\left(-\frac{\sqrt{8}}{3},\frac{8}{3}\right)$: $y'|_{\left(-\frac{\sqrt{8}}{3},\frac{8}{3}\right)$} = m_1 = -\frac{\left(-\frac{\sqrt{8}}{3}\right)}{\frac{8}{3}} = \frac{\sqrt{8}}{8} \text{ y} \qquad \quad y'|_{\left(-\frac{\sqrt{8}}{3},\frac{8}{3}\right)$} = m_2 = \frac{-8\sqrt{8}/3}{8/3} = -\sqrt{8} \\ \text{Como m_1*m_2} = \frac{\sqrt{8}}{8}*\left(-\sqrt{8}\right) = -1 \ \Rightarrow \text{Son perpendiculares u ortogonales} \\ \end{array}$$

$$\begin{array}{l} \bullet \quad \text{En $P_3\left(-\frac{\sqrt{8}}{3},-\frac{8}{3}\right)$: $y'|_{\left(-\frac{\sqrt{8}}{3},-\frac{8}{3}\right)}=m_1=-\frac{\left(-\frac{\sqrt{8}}{3}\right)}{\left(-\frac{8}{3}\right)}=-\frac{\sqrt{8}}{8} \quad \text{y} \qquad y'|_{\left(-\frac{\sqrt{8}}{3},-\frac{8}{3}\right)}=m_2=\frac{-8\sqrt{8}/3}{(-8/3)}=\sqrt{8} \\ \text{Como $m_1*m_2=-\frac{\sqrt{8}}{8}*\sqrt{8}=-1$} \Rightarrow \text{Son perpendiculares u ortogonales} \end{array}$$

- 5. Un granjero debe cultivar $180\ m^2$ de tierra con frutillas ¿Qué dimensiones debe tener el campo completo para minimizar la superficie si debe dejar callejones de $2,5\ m$ de ancho hacia el Oeste y Este, y callejones de $2\ m$ hacia el Norte y Sur para poder ingresar. (*Verifique el resultado empleando el criterio correspondiente*).
 - a. Identifique variables:

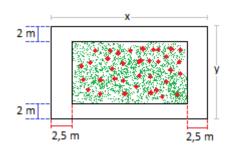
x: medida del largo del campo

y: medida del ancho del campo

2

ASIGNATURA Cálculo I AÑO 2018 **TEMA**

b. Dibuje un esquema del problema:



c. Plantee ecuaciones que modelan el problema:

$$\begin{cases}
A_T = x \cdot y & (1 \\
A_C = (x - 5)(y - 4) & (2 \\
\end{pmatrix}$$

d. Resuelva:

(1) es la ecuación a optimizar, en este caso, a minimizar. (2) es la ecuación que contiene dato por lo que se despejará de ella a una de las variables:

Se despeja de (2) a
$$y$$
: $y = \frac{A_C}{x-5} + 4 = \frac{180}{x-5} + 4$

Se reemplaza en (1):

$$A(x,y) = x \cdot y = x \left(\frac{180}{x - 5} + 4 \right) = \frac{180x}{x - 5} + 4x$$
$$A(x) = \frac{180x}{x - 5} + 4x$$

Se deriva la ecuación obtenida respecto de
$$x$$
 y se iguala a cero para optimizar:
$$\frac{dA(x)}{dx} = A'(x) = \frac{180(x-5)-180x}{(x-5)^2} + 4 = \frac{180x-900-180x}{(x-5)^2} + 4 = 0$$

$$\frac{180x - 900 - 180x}{(x+5)^2} = -4 \Rightarrow 225 = x^2 - 10x + 25 \Rightarrow 0 = x^2 - 10x - 200 \Rightarrow x_1 = -10 \text{ y } x_2 = 20$$

Dado que se trata de una longitud se toma sólo el valor positivo.

Se reemplaza el valor obtenido para encontrar y: $y = \frac{180}{x-5} + 4 = \frac{180}{20-5} + 4 = 16 \Rightarrow y = 16$

Las dimensiones que darán la menor área total serán 20 m de largo por 16 m de ancho.

e. Verifique por el criterio de la 2da derivada:

$$A_T'(x) = \frac{-900}{(x+5)^2}$$
 $A_T''(x) = +\frac{1800}{(x+5)^3}$
La derivada 2º dará positiva para cualquier valor de x, dado que este siempre será positivo. Por lo tanto, si $f''(x) > 0$ para $x = c$ existe un mínimo en $x = c$.

ASIGNATURA Cálculo I AÑO 2018 TEMA 2

6. Dadas las funciones f representadas en 1), 2), 3), las derivadas primeras f' en A), B), C) y las derivadas segundas f'' en a), b), c) indique cómo se corresponden entre sí.

Función <i>f</i>	1)	2)	3)
1º Derivada <i>f'</i>	В	С	Α
2º Derivada f"	c)	b)	a)

