UNCUYO UNIVERSIDAD NACIONAL DE CUYO

INGRESO 2020

Respuestas del TRABAJO PRÁCTICO Nº 4

ASIGNATURA

MATEMÁTICA

EJERCICIO Nº 1

$$-x^2 - 8 = y$$

$$-5x^2 = v$$

$$- \sqrt{x^3} = y$$

EIERCICIO Nº 2

- a) **No es función**. Si realizamos la prueba de la recta vertical, corta en dos puntos de la gráfica, no cumplen unicidad.
- b) Si es función.
- c) Si es función.
- d) **No es función**. Si realizamos la prueba de la recta vertical, corta en más de dos puntos de la gráfica, no cumplen unicidad.
- e) **No es función**. Si realizamos la prueba de la recta vertical, corta en dos puntos de la gráfica, no cumplen unicidad.
- f) **No es función**. Si realizamos la prueba del tiro vertical, corta en infinitos puntos de la gráfica.

EIERCICIO Nº 3

a)
$$f(x) = 2x + 1$$

$$f(1) = 3, f(-2) = -3, f(\frac{1}{2}) = 2, f(a) = 2, a + 1, f(-a) = -2, a + 1,$$

$$f(a + b) = 2.(a + b) + 1 = 2a + 2b + 1.$$

b)
$$g(x) = x^2 + 2x$$

$$g(0) = 0, g(3) = 15, g(-3) = 3, g(a) = a^2 + 2, a, g(-x) = (-x)^2 + 2, (-x) = x^2 - 2x$$

$$g\left(\frac{1}{a}\right) = \left(\frac{1}{a}\right)^2 + \frac{2}{a}$$

c)
$$h(x) = \frac{1-x}{1+x}$$

$$h(2) = \frac{1-2}{1+2} = -\frac{1}{3}, \ h(-2) = \frac{1-(-2)}{1+(-2)} = -3, \ h\left(\frac{1}{2}\right) = \frac{1-\frac{1}{2}}{1+\frac{1}{2}} = \frac{1}{3}, \ h(a) = \frac{1-a}{1+a}, \ h(a-1) = \frac{1-(a-1)}{1+(a-1)} = \frac{-a+2}{a},$$

$$h(-1) = \frac{1 - (-1)}{1 + (-1)} = \frac{2}{0}$$
 = no existe solución

d)
$$j(x) = \begin{cases} x & \text{si } x < 0 \\ x + 1 & \text{si } x \ge 0 \end{cases}$$

 $j(-2) = -2, j(-1) = -1, \quad j(0) = 1, \quad j(1) = 2, \quad j(2) = 3$
e) $k(x) = \begin{cases} 5 & \text{si } x \le 2 \\ 2x - 3 & \text{si } x > 2 \end{cases}$
 $k(-3) = 5, k(0) = 5, k(2) = 5, k(3) = 3, k(5) = 7$
f)

$$l(x) = \begin{cases} x^2 + 2x & \text{si } x \le 1 \\ x & \text{si } -1 < x \le 1 \\ -1 & \text{si } x > 1 \end{cases}$$

 $l(-4) = 8, l\left(-\frac{3}{2}\right) = -\frac{3}{4}, l(-1) = -1, l(0) = 0, l(25) = -1$

EJERCICIO Nº 4

f(x): Df: [-6, ∞), Im: (- ∞ , 5]; Ceros: x_1 = -4, x_2 = -2, x_3 = 4, Ordenada al origen: f(0)= 3, (0,3), o y = 3, Indeterminación: NO tiene; C^+ : (-4,-2)U(-2,4), C^- : (-6, -4)U(4, ∞ +); Crecimiento: [-6, -3)U(-2,2), Decrecimiento: (-3, -2)U(2, ∞ +).

g(x): Df: (- ∞ , 7], Im: [-2, ∞ +); Ceros: x_1 : -5, x_2 : -3, x_3 : 5; Ordenada al origen: g(0)= 2, (0,2) o y=2; Indeterminación: No tiene; C^+ : (- ∞ , -5)U(-3,5); C^- : (-5,-3)U(5,7); Crecimiento: (-4,-1); Decreciente: (- ∞ , -4) U (3,7].

h(x): Df: R-{-2}; Im: R-{0}; Ceros: no tiene; Ordenada al origen: $h(0) = \frac{1}{2}$, $(0, \frac{1}{2})$ o $y = \frac{1}{2}$; Indeterminación: x = -2, C^+ : $(-2, \infty+)$; C^- : $(-\infty, -2)$; Estrictamente decreciente.

j(x): Df: [-7, 7]; Im: [-2, 3]; Ceros: x_1 = -4, x_2 = -1, x_3 = 5; Ordenada al origen: j(0)= 1, (0,1) o y= 1, Indeterminación: No tiene; C^+ : [-7,-4) U (-1, 5); C^- : (-4,-1) U (5,7]; Creciente: (-2,2); Decreciente: [-7,-2) U (2,7].

k(x): Df: [-7, ∞ +); Im: [0, ∞ +); Ceros: x_1 = -4, x_2 = 6, , Ordenada al origen: k(0)= 2 o(0,2) o y =2; Indeterminación: No tiene; C^+ : (-7,-4) U (-4, 6) U (6, ∞ +); C^- : No tiene; Crecimiento: (-4,2) U (6, ∞ +); Decrecimiento: (-7, -4) U (2,6).

l(x): Df: R - {-4, 4}; Im: R - { 1}; Ceros: x_1 = -3, x_2 = 3; Ordenada al origen: $l(0) = \frac{1}{2}$ o $y = \frac{1}{2}$; Indeterminación: x = -4, x = 4; C +: (- ∞ , -4) U (-3,3) U (4, ∞ +); C -: (-4,-3) U (3,4); Crecimiento:(- ∞ , -4) U (-4,0); Decreciente: (0,4) U (4, ∞ +).

EJERCICIO Nº 5

a)
$$g(-4) = 3$$
, $g(-2) = 2$, $g(0) = -2$ $g(2) = 1$ $g(4) = 0$

b)
$$g(x) = 3 \rightarrow x=-4$$
, $g(x) = 2 \rightarrow x=-2 \text{ y } 3.5$, $g(x) = 0 \rightarrow x=-1 \text{ y } 1.9 \text{ y } 4$, $g(x) = -2 \rightarrow x=0$

d) Ceros:
$$x_1 = -1$$
, $x_2 \cong 1.8$, $x_3 = 4$. Ordenada al origen: $g(0) = -2$, $g(0) = -2$.

EJERCICIO N° 6

a)
$$f(x) = 3x - 5$$

Df: R. Ceros: $x = \frac{5}{3}$. Ordenada al origen: f(0) = -5, (0,-5) o y= 5. Indeterminación: no tiene.

$$C^+: (\frac{5}{3}, \infty +). C^-: (-\infty, \frac{5}{3}).$$

b)
$$g(x) = x^2 - 2x$$

Dg: R. Ceros: $x_1 = 0$, $x_2 = 2$. Ordenada al origen: g(0) = 0 o y = 0. Indeterminación: no tiene.

$$C^+$$
: $(-\infty, 0)$ U $(2, \infty+)$. C^- : $(0, 2)$.

C)
$$h(x) = \frac{3x}{x-1}$$

Dh: R – {1}. Ceros: x_1 = 0. Ordenada al origen: h(0)= 0, (0,0) o y=0. Indeterminación: x= 1.

$$C^+$$
: $(-\infty,0)$ U $(1,\infty+)$. C^- : $(0,1)$.

d)
$$j(x) = \frac{x^2 - 1}{x + 4}$$

Dj: R-{-4}. Ceros: $x_1 = -1$, $x_2 = 1$. Ordenada al origen: $j(0) = -\frac{1}{4}$, $(0, -\frac{1}{4})$, o y= $-\frac{1}{4}$

Indeterminación: x = -4. C^+ : (-4,-1) U $(1,\infty+)$. C^- : $(-\infty,-4)$ U (-1,1).

e)
$$k(x) = \frac{3x-2}{x^2-4x-5}$$

Dk: R - { -1, 5}. Ceros: $x_1 = \frac{2}{3}$. Ordenada al origen: $k(0) = \frac{2}{5}$, $(0, \frac{2}{5})$ o $y = \frac{2}{5}$.

Indeterminación: x = -1, x = 5. C^+ : $(-1, \frac{2}{3})$ U $(5, \infty +)$. C^- : $(-\infty, -1)$ U $(\frac{2}{3}, 5)$.

f)
$$l(x) = \sqrt{2x-5}$$

 $Dl = [\frac{5}{2}, \infty +)$. Ceros: $x_1 = \frac{5}{2}$. Ordenada al origen: $l(0) = \nexists$ o $y = \nexists$. Indeterminación: No tiene. C^+ : $(\frac{2}{5}, \frac{1}{5})$

 ∞ +) . C^- : no tiene.

g)
$$m(x) = \frac{\sqrt{3x+2}}{x-1}$$

 $Dm: [-\frac{2}{3}, 1) \text{ U } (1, \infty +). \text{ Ceros: } x_1 = -\frac{2}{3}. \text{ Ordenada al origen: } m(0) = -\sqrt{2}, (0, -\sqrt{2}) \text{ o y} = -\sqrt{2}$

Indeterminación: no tiene x = 1. C^+ : $(1, \infty +)$. C^- : $(-\frac{2}{3}, 1)$.

h)
$$n(x) = \frac{4x+1}{\sqrt{x^2+1}}$$

Dn: R. Ceros: $x_1 = -\frac{1}{4}$. Ordenada al origen: n(0) = 1, (0,1) o y = 1. Indeterminación: no tiene.

$$\mathcal{C}^+\colon ({\scriptstyle \frac{1}{4}},\infty+).\;\mathcal{C}^-\colon ({\scriptstyle \frac{1}{4}},\infty+).$$

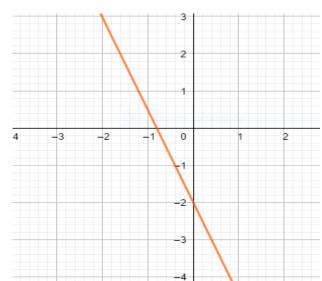
i)
$$\tilde{n}(x) = \frac{4x^2 - 25}{\sqrt{x^2 - 1}}$$

Dñ: $(-\infty, -1) \cup (1, \infty)$. Ceros: $x_1 = -\frac{5}{2}$, $x_2 = \frac{5}{2}$. Ordenada al origen: $\tilde{n}(0)$ no está definida.

$$C^+:\left(-\infty,-\frac{5}{2}\right)\cup\left(\frac{5}{2},\infty\right).\ C^-:\left(-\frac{5}{2},-1\right)\cup\left(1,\frac{5}{2}\right).$$

Ejercicio N°7

$$y_1 = -\frac{5}{2} x - 2 \quad \bullet$$



ر د

b) Cero:
$$-\frac{5}{2}x - 2 = 0$$

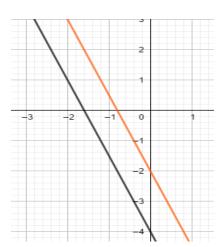
$$x = -\frac{4}{5}$$

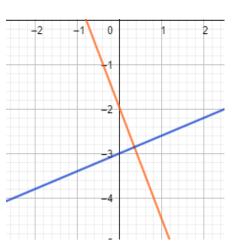
Ordenada de Origen:

$$y = -2$$

c) Paralela:
$$y = -\frac{5}{2}x - 4 \quad \bullet$$

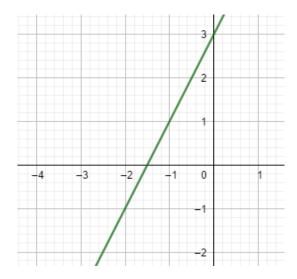
Perpendicular:
$$y = \frac{2}{5}x - 3$$



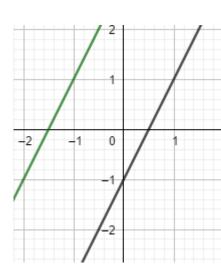


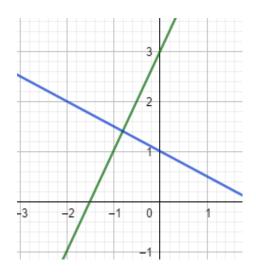
d) Paralela por el P(-1 5) es: $y = -\frac{5}{2}x + \frac{5}{2}$ Perpendicular por el Q (3, -2) es: $y = \frac{2}{5}x - \frac{16}{5}$

$$y_2 = 2x + 3$$
 • a)



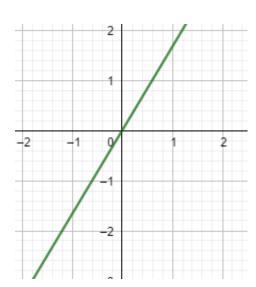
- b) Ceros: 2x + 3 = 0 $x = -\frac{3}{2}$
- Ordenada de Origen: y= 3
- c) Paralela: y = 2x 1 Perpendicular: $y = -\frac{1}{2}x + 1$





d) Paralela por el P (-1 5) es: y = 2x + 7Perpendicular por el Q (3, -2) es: $y = -\frac{1}{2}x - \frac{1}{2}$

$$y_3 = \frac{5}{3} x$$

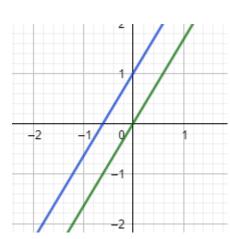


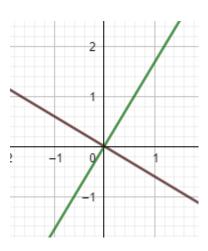
b) Ceros: $\frac{5}{3} x = 0$ x = 0

Ordenada de Origen: y= 0

c) Paralela: $y = \frac{5}{3} x + 1 \quad \bullet$

Perpendicular: $y = -\frac{3}{5} x \quad \bullet$

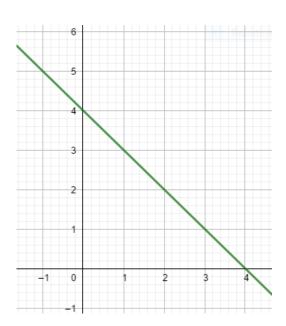




d) Paralela por el P (-1, 5) es: $y = \frac{5}{3} x + \frac{20}{3}$ Perpendicular por el Q (3, -2) es: $y = -\frac{3}{5}x - \frac{1}{5}$

$$y_4 = -x + 4 \quad \blacksquare$$

a)



b) Ceros: -x + 4 = 0

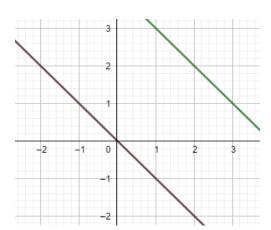
x = 4

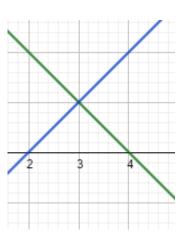
Ordenada de Origen:

y= 4

c) Paralela: y = -x

Perpendicular: y = x + 2

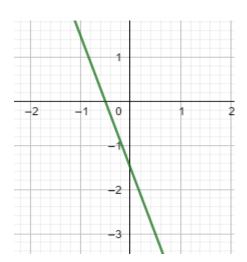




d) Paralela por el P (-1 5) es: y = -x + 4Perpendicular por el Q (3, -2) es: y = x - 5

$$y_5 = -3x + \frac{3}{2} \quad \bullet$$

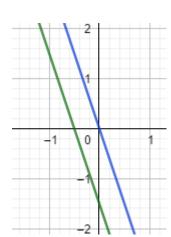
a)

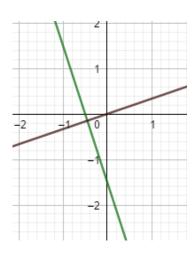


b) Ceros: $-3x + \frac{3}{2} = 0$ $x = \frac{1}{2}$ c) Paralela: y = -3x

Ordenada de Origen: $y = \frac{3}{2}$

Perpendicular: $y = \frac{1}{3}x \bullet$

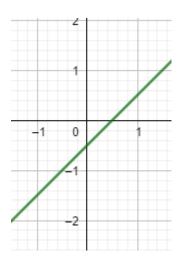




d) Paralela por el P (-1, 5) es: y = -3x + 2Perpendicular por el Q (3, -2) es : $y = \frac{1}{3}x - 3$

$$y_6 = x - \frac{1}{2} \quad \bullet$$

a)



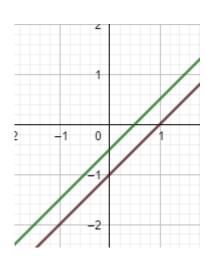
b) Ceros: $x - \frac{1}{2} = 0$ $x=\frac{1}{2}$

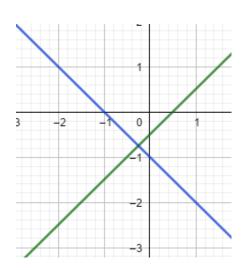
Ordenada de Origen: $y = -\frac{1}{2}$

$$y = -\frac{1}{2}$$

c) Paralela: $y = x - 1 \quad \bullet$

Perpendicular: y = -x - 1





d) Paralela por el P (-1 5) es: y = x + 6Perpendicular por el Q (3, -2) es: y = -x + 1

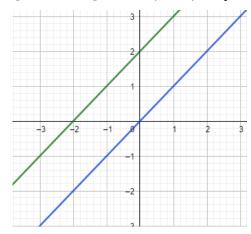
Ejercicio Nº 8

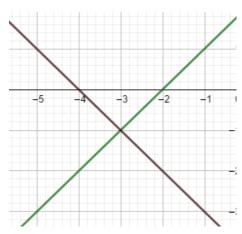
a) a₁: tenemos los puntos con coordenadas, (-2,0) y (1,3), y = x + 2

b₁: Ceros: x + 2 = 0 Ordenada al origen y = 2

c₁: Paralela por el P (2, 2) es: y = x

Perpendicular por el Q (-3, -1) es: y = -x - 4



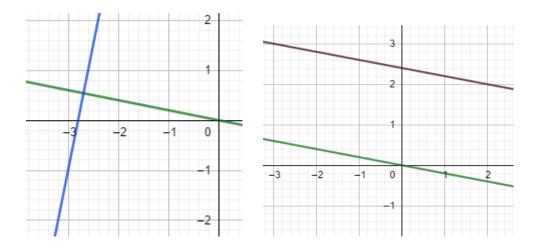


b) a₁: tenemos los puntos con coordenadas, (0,0) y (5,-1), $y = -\frac{1}{5}x$

b₁: Ceros: $-\frac{1}{5}x = 0$ Ordenada al origen x = 0 y = 0

C₁: Paralela por el P (2, 2) es: $y = -\frac{1}{5} x + \frac{12}{5}$

Perpendicular por el Q (-3, -1) es: y = 5 x + 14



c) a₁: tenemos los puntos con coordenadas, (0,3) y (2,0), $y = -\frac{3}{2}x + 3$

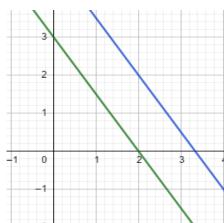
b₁: Ceros: $-\frac{3}{2}x + 3 = 0$

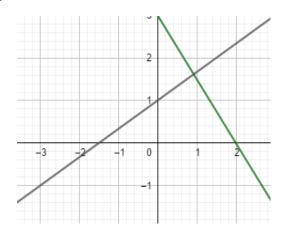
Ordenada al origen y= 3

x = 2

C₁: Paralela por el P (2, 2) es: $y = -\frac{3}{2} + 5$

Perpendicular por el Q (-3, -1) es: $y = \frac{2}{3}x + 1$





d) a₁: tenemos los puntos con coordenadas, (0,-2) y (2,1), $y = \frac{3}{2} x - 2$

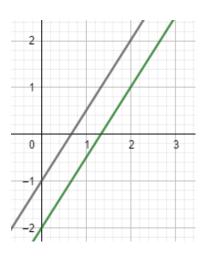
 b_1 :Ceros: $\frac{3}{2} x - 2 = 0$

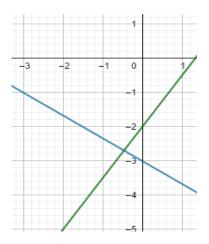
Ordenada al origen y= -2

 $x = \frac{4}{3}$

C₁: Paralela por el P (2, 2) es: $y = \frac{3}{2} x - 1$

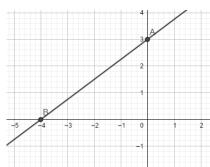
Perpendicular por el Q (-3, -1) es: $y = -\frac{2}{3}x - 3$





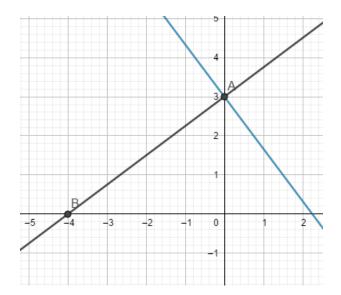
<u>Ejercicio Nº 9</u>

$$y=\frac{3}{4}x+3$$



Ecuación	Pendiente	O. al origen	Cero	E. perpendicular
$y = \frac{3}{4} x + 3$	$m=\frac{3}{4}$	y= 3	<i>x</i> ₁ : - 4	$y = -\frac{4}{3}x + 3$

Perpendicular: $y = -\frac{4}{3}x + 3$



Ejercicio Nº 10

$$y_1 = -x^2 - 3x + 4$$

a)

Raíces:

$$-x^2 - 3x + 4 = 0$$
 $a = -1$

$$-x^2 - 3x + 4 = 0$$
 $a = -1$ $b = -3$ $c = 4$

Usando la fórmula:
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\chi_{1,2} = \frac{-\,(-3) \pm \sqrt{(-3)^2 - 4 \cdot (-1) \cdot 4}}{2 \cdot (-1)} = \frac{3 \pm \sqrt{9 + 16}}{-2} = \frac{3 \pm \sqrt{25}}{-2} = \frac{3 \pm 5}{-2} =$$

$$x_1 = \frac{3+5}{-2} = \frac{8}{-2} = -4$$

$$x_2 = \frac{3-5}{-2} = \frac{-2}{-2} = 1$$

Entonces:
$$x_1 = -4$$
, $x_2 = 1$

Gráficamente serán los puntos de coordenadas, A (-4,0) y B (1,0)

Vértice

Como el vértice es un punto en su representación gráfica, tiene las siguientes coordenadas,

 $V(x_v, y_v)$. Para encontrar x_v debemos utilizar:

$$x_v = -\frac{b}{2.a}$$

para este ejercicio realizamos lo siguiente:

$$x_v = -\frac{-3}{2.(-1)} = -\frac{-3}{-2} = -\frac{3}{2}$$

usando la función, evaluamos x_v

Entonces el vértice es:

$$y_v = -(-\frac{3}{2})^2 - 3 \cdot (-\frac{3}{2}) + 4$$

$$V(-\frac{3}{2}, \frac{25}{4})$$

$$y_v = -\frac{9}{4} + \frac{9}{2} + 4$$

$$\mathbf{y_v} = \frac{25}{4}$$

Eje de simetría

Para obtener el eje de simetría debemos utilizar la ecuación $x = x_v$

Continuando con el ejercicio tenemos que: $x = -\frac{3}{2}$, (Eds), es el eje de simetría.

Nota: Eds: Eje de simetría

Ordenada al origen

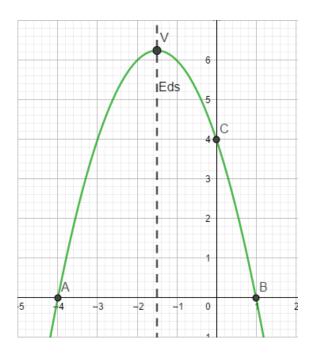
Debemos evaluar a la función por 0, (cero).

$$y_1 = -0^2 - 3.0 + 4$$

$$y_1 = 4$$

Es decir que el punto en donde la gráfica corta el eje de ordenadas tiene coordenadas, C (0, 4).

b)



c) Su forma *canónica* teniendo cuenta la expresión, $f(x) = a \cdot (x - h)^2 + h$ en donde V(h, k) es el vértice de la parábola, entonces en nuestro ejercicio tenemos:

$$V\left(-\frac{3}{2}, \frac{25}{4}\right) \longrightarrow y_1 = -1.\left[x - \left(-\frac{3}{2}\right)\right]^2 + \frac{25}{4}$$

$$y_1 = -1.\left(x + \frac{3}{2}\right)^2 + \frac{25}{4}$$

$$y_1 = -\left(x + \frac{3}{2}\right)^2 + \frac{25}{4} \longrightarrow f(x) = -\left(x + \frac{3}{2}\right)^2 + \frac{25}{4}$$

Teniendo en cuenta que, la expresión **factorizada** de la función cuadrática es aquella que se forma en función de los ceros, f(x) = a. $(x - x_1)$. $(x - x_2)$.

En nuestro ejercicio tenemos que lo ceros son:

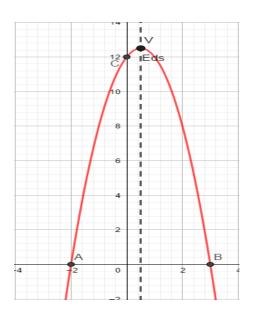
$$x_1 = -4, x_2 = 1$$

 $f(x) = -1.[x - (-4)].(x - 1) \longrightarrow f(x) = -(x + 4).(x - 1)$

$$y_2 = -2x^2 + 2x + 12$$

Raíces: $x_1 = -2 \text{ y } x_2 = 3 \longrightarrow \mathbf{A}(-2,0) \text{ y } \mathbf{B}(3,0)$

Vértice: $V(\frac{1}{2}, \frac{25}{2})$ Eje de simetría: $x = \frac{1}{2}$, (Eds). O. al origen: C (0, 12)



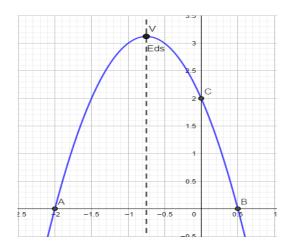
Canónica:
$$y_2 = -2.\left(x - \frac{1}{2}\right)^2 + \frac{25}{2}$$

Factorizada:
$$y_2 = -2.(x + 2).(x - 3)$$

$$y_3 = -2x^2 - 3x + 2$$

Raíces: $x_1 = -2 \text{ y } x_2 = \frac{1}{2} \longrightarrow \mathbf{A} (-2,0) \text{ y } \mathbf{B} (\frac{1}{2},0)$

Vértice: $V(-\frac{3}{4}, \frac{25}{8})$ Eje de simetría: $x = -\frac{3}{4}$, (Eds) O. al origen: C (0, 2)



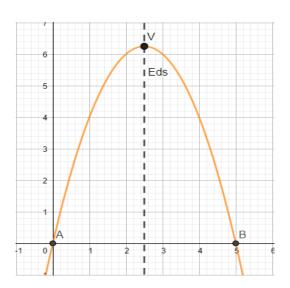
Canónica:
$$y_3 = -2.\left(x + \frac{3}{4}\right)^2 + \frac{25}{8}$$

Factorizada:
$$y_3 = -2.(x + 2).(x - \frac{1}{2})$$

$$y_4 = -x^2 + 5x$$

Raíces: $x_1 = 0$ y $x_2 = 5$ \longrightarrow **A**(0,0) y **B**(5,0)

<u>Vértice</u>: $V(\frac{5}{2}, \frac{25}{4})$ <u>Eje de simetría</u>: $x = \frac{5}{2}$ <u>O. al origen</u>: C(0, 0). Observación: una de las raíces coincide con la ordenada al origen).



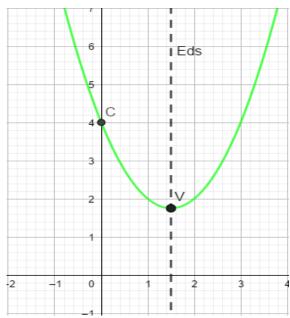
Canónica:
$$y_4 = -(x - \frac{5}{2})^2 + \frac{25}{4}$$

 $y_5 = x^2 - 3x + 4$

Factorizada: $y_4 = -x \cdot (x - 5)$

Raíces: $x_1 = \nexists$ y $x_2 = \nexists$

Vértice: V($\frac{3}{2}$, $\frac{7}{4}$) Eje de simetría: $x = \frac{3}{2}$, (Eds). O. al origen: C (0, 4)



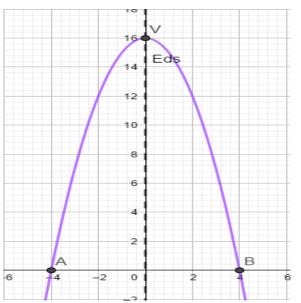
Canónica:
$$y_5 = (x - \frac{3}{2})^2 + \frac{7}{4}$$

Factorizada: $y_5 = \mathbb{1}$

$$y_6 = -x^2 + 16$$

Raíces: $x_1 = -4 \text{ y } x_2 = 4 \longrightarrow \mathbf{A}(-4,0) \text{ y B } (4,0)$

<u>Vértice</u>: V(0, 16) <u>Eje de simetría</u>: x = 0. (Eds). <u>O. al origen</u>: C(0, 16). Observación: el vértice coincide con la ordenada al origen; el eje de simetría coincide con el eje y.



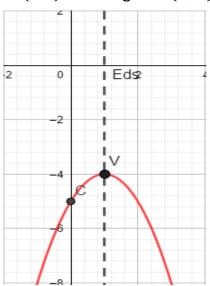
Canónica: $y_6 = -(x)^2 + 16$

Factorizada: $y_6 = -(x+4).(x-4)$

$$y_7 = -x^2 + 2x - 5$$

Raíces: $x_1 = \nexists$ y $x_2 = \nexists$

Vértice: V(1, -4) Eje de simetría: x = 1. (Eds). O. al origen: C(0, -5)



Canónica: $y_7 = -(x-1)^2 - 4$

Factorizada: no tiene

Ejercicio Nº 11

Teniendo en cuenta que:

- ✓ Si $b^2 4 \cdot a \cdot c > 0$, se obtienen dos raíces diferentes
- ✓ Si $b^2 4$. a.c = 0 se obtiene dos raíce iguales.
- ✓ Si $b^2 4$. a. c < 0 no tiene raíces reales.

$$y_1 = x^2 + x - 6$$

Analizamos el discriminante:

$$1^2 - 4.1.(-6) = 25$$

Al tener un número mayor que cero, debe tener dos raíces diferentes, y teniendo en cuenta el cálculo del mismo, deducimos que:

$$\chi_{1,2} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-6)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{25}}{2} = \frac{-1 \pm 5}{2}$$

 $y_1 = x^2 + x - 6$, corresponde a la gráfica **F.**

 $y_2 = x^2 + 4x + 3$, corresponde a la gráfica **E.**

 $y_3 = x^2 - 6x + 8$, corresponde a la gráfica **B.**

 $y_4 = x^2 + 2x + 5$, corresponde a la gráfica **C.**

 $y_5 = x^2 + 4x + 4$, corresponde a la gráfica **A.**

 $y_6 = x^2 - 4x + 4$, corresponde a la gráfica **D**.

Ejercicio Nº 12

Para poder encontrar las expresiones de las siguientes gráficas podemos recurrir a información brindada por las misma, pudiendo identificar, sus ceros o vértice o al origen o a la combinación de esa información.

Gráfica A

Teniendo en cuenta la información de la primera gráfica y teniendo en cuenta que a = 1,

Los ceros o raíces son: $x_1 = -4$ $x_2 = 3$, sabiendo que la expresión factorizada es:

$$y = a \cdot (x - x_1) \cdot (x - x_2)$$

$$y = 1.[x - (-4)].(x - 3)$$

$$y = 1.(x + 4).(x - 3)$$

$$y = x^2 - 3x + 4x - 12$$

$$y = x^2 + x - 12$$

Gráfica **B**

$$y = x^2 + 4x - 8$$

Gráfica C

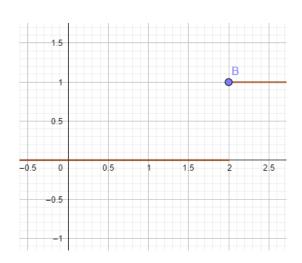
$$y=x^2-2x-7$$

Gráfica **D**

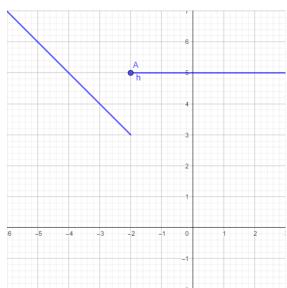
$$y = x^2 - 4x - 5$$

Ejercicio 13

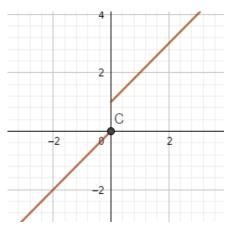
a)
$$f(x) = \begin{cases} 0 & \text{si } x < 2 \\ 1 & \text{si } x \ge 2 \end{cases}$$



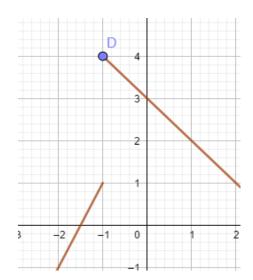
$$b) f(x) = \begin{cases} 1 - x & \text{si } x < -2\\ 5 & \text{si } x \ge -2 \end{cases}$$



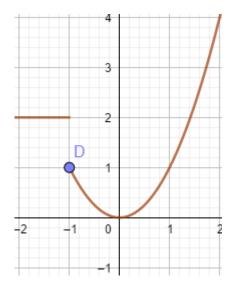
c)
$$f(x) = \begin{cases} x & \text{si } x \le 0 \\ x+1 & \text{si } x > 0 \end{cases}$$



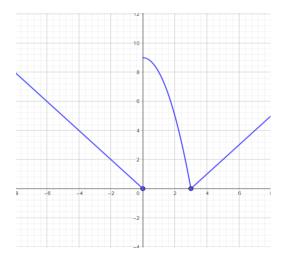
d)
$$f(x) = \begin{cases} 2x + 3 & \text{si } x < -1 \\ 3 - x & \text{si } x \ge -1 \end{cases}$$



$$e) f(x) = \begin{cases} 2 & si \ x < -1 \\ x^2 & si \ x \ge -1 \end{cases}$$

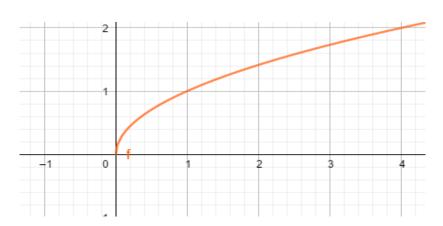


f)
$$f(x) = \begin{cases} -x & \text{si } x \le 0\\ 9 - x^2 & \text{si } 0 < x \le 3\\ x - 3 & \text{si } x > 3 \end{cases}$$

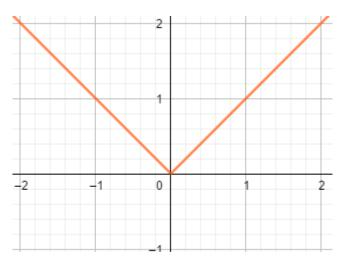


Ejercicio Nº 14

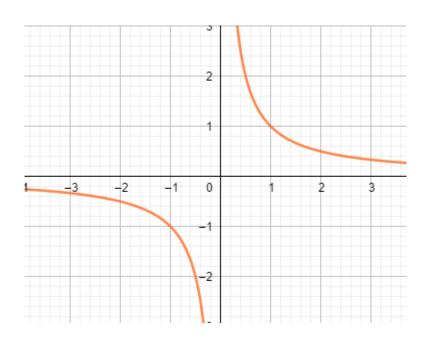
$$y_1 = \sqrt{x}$$



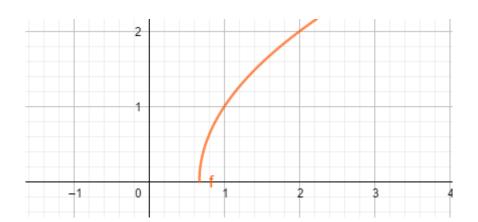
 $y_2 = |x|$



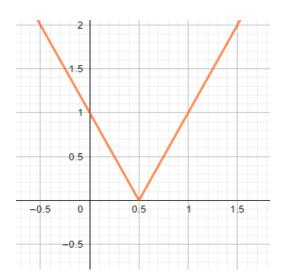
 $y_3 = \frac{1}{x}$



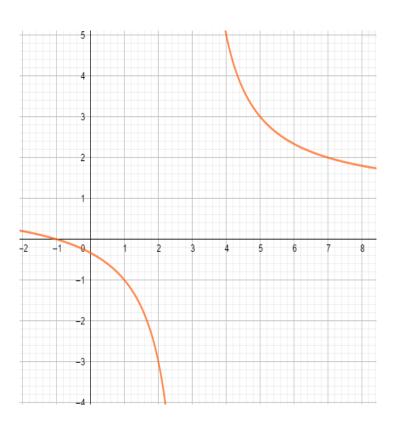
 $y_4 = \sqrt{3x - 2}$



$$y_5 = |2x - 1|$$



$$y_6 = \frac{x+1}{x-3}$$



Página **22** de **36**

Ejercicio Nº 15

a)
$$f(x) = x + x^4$$
 $x = 1, x = 3$

$$f(3) = 3 + 3^4 = 3 + 81 = 84$$

$$f(1)=1+1^4=1+1=2$$

Entonces: tasa promedio de cambio = $\frac{84-2}{3-1} = \frac{82}{2} = 41$

b)
$$f(x) = 3x^2$$
 $x = 2, x = 2 + h$

Tasa de promedio de cambio = 12 + 3h

c)
$$f(x) = 4 - x^2$$
; $x = 1, x = 1 + h$

Tasa promedio de cambio = -2 - h

d)
$$g(x) = \frac{1}{x}$$
 $x = 1, x = a$

Tasa de promedio de cambio= $\frac{1-a}{a^2-a}$

e)
$$g(x) = \frac{2}{x+1} \quad x = 0, x = h+1$$

Tasa de promedio: $-\frac{2}{h+2}$

Ejercicio Nº 16

$$a) \ f(x) = 3x + 2$$

$$f(a) = 3a + 2$$

$$f(a+h) = 3a + 3h + 2$$

La consigna dice, $\frac{f(a+h)-f(a)}{h}$, donde $h \neq 0$

$$\frac{3a+3h+2-(3a+2)}{h} = \frac{3a+3h+2-3a-2}{h} = \frac{3h}{h} = \mathbf{3}$$

b)
$$f(x) = x^2 + 1$$

$$\frac{f(a+h)-f(a)}{h}=2a+h$$

c)
$$f(x) = 5$$

$$\frac{f(a+h)-f(a)}{h} = \mathbf{0}$$

d)
$$f(x) = \frac{1}{x+1}$$

$$\frac{f(a+h)-f(a)}{h} = -\frac{1}{(a+h+1).(a+1)}$$

e)
$$f(x) = \frac{x}{x+1}$$

$$\frac{f(a+h)-f(a)}{h} = \frac{1}{(a+h+1).(a+1)}$$

f)
$$f(x) = \frac{2x}{x-1}$$

$$\frac{f(a+h)-f(a)}{h} = \frac{2}{h*(a+h-1)}$$

Ejercicio Nº 17

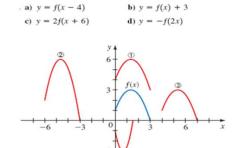
$$f(x) = x^3$$

$$\frac{f(2+h)-f(2)}{h} = 12 + 6h + h^2$$

Ejercicio Nº 18

- a) Tasa de promedio de población = 245
- b) Tasa de promedio de población = 328, 5
- c) El periodo que fue creciente la población es del 1997-2001
- d) El periodo que fue creciente la población es del 2002-2006

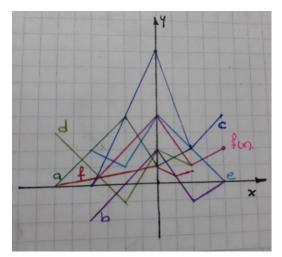
Ejercicio 19 (Transformación)



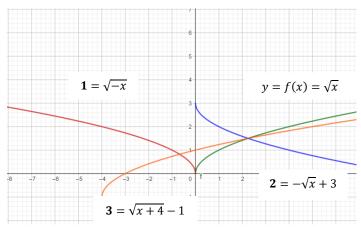
Se corresponde con

- a) 3.
- b) 1.
- c) 2.
- d) 4

Ejercicio 20 (Transformación)

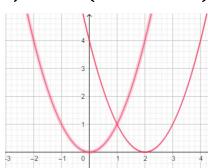


Ejercicio 21 (Transformación)

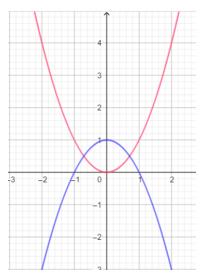


- 1. Se refleja respecto del eje y.
- 2. Se refleja respecto del eje x; se traslada 3 unidades hacia arriba.
- 3. Se desplaza 4 unidades a la derecha de la función, se traslada verticalmente 1 unidad hacia abajo

Ejercicio 22 (Transformación)

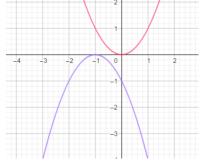


Traslación horizontal 2 unid. a la Izq. de f.

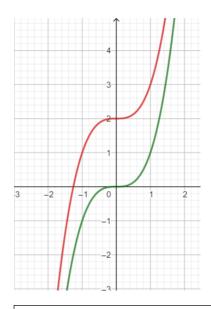


Traslación verticalmente 1 unid. hacia arriba de f. y se refleja respecto del eje de

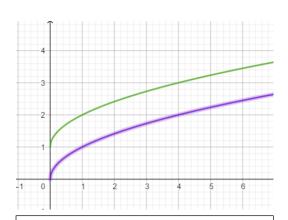
Traslación horizontal 7 unid. Der. de f.



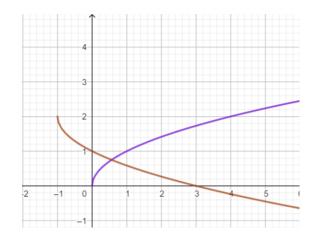
Traslación horizontal 1 unid. a la der. de f. y se refleja respecto del eje de abscisas (eje x)



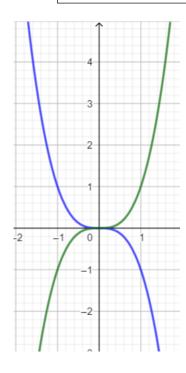
Traslación verticalmente 2 unid. hacia arriba de f.



Traslación verticalmente 1 unid. hacia arriba de f.



Refleja respecto del eje de ordenadas (eje y)



Traslación verticalmente 2 unid. hacia arriba de f. y se refleja respecto del eje de abscisas (eje x)

Ejercicio 23 (Modelado)

1. Respondemos las incógnitas que se nos plantean.

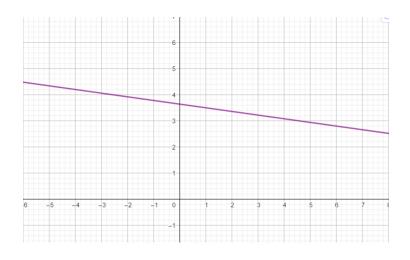
Variables involucradas:

y: Volumen de la represa en millones de litros dia $\Big(100\ millones\ de\ \frac{Lts}{Dia}\Big)$.

x: cantidad de dias (dia)

a.
$$y(100 \text{ millones } lts/dia) = 3,64 - 0,14x =$$

b. Gráfica



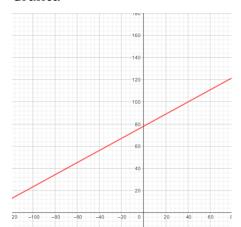
- c. Se vaciará la represa en 26 días.
- 2. Variables

y: precio a abonar en \$.

x: comsumo en Kw

a.
$$y(x) = 78 + 0.5475 x$$
 (la variable y se mide en \$)

b. Gráfica



- c. El precio superara los 114 \$ cuando se haya consumido más de 65,75 kW.
- 3. Las variables

$$y = P(x)$$
: cant. de articulos producidos x : dinero invertido(\$)

a.
$$y = P(x) = \frac{1}{100}x - 8$$

- b. Para realizar 145 artículos se debe invertir 15.300.
- c. La cantidad de artículos producidos será 72.
- 4. Las variables

t: (tiempo)

a.
$$y(t) = 0$$
 para $t_1 = -0.19$ y $t_2 = 4.27$ la respuesta correcta es t_2 no existe tiempo negativo.

b.
$$y(0) = 4$$

- c. Por ser una cuadrática el *Dom natural es* \forall $t \in \mathbb{R}$ y por ser una función de tiempo *Dom contextual es* (0; 4,27)
- 5. Las variables

$$B(x)$$
: Beneficios del fabricante (moneda)

x: Cantidad de relojes

a.
$$x_v = 50$$
 $y_v = 4900$

- b. Se debe vender a finde no tener pérdidas entre (0; 120) relojes
- c. Logra un beneficio de 4500 \$.
- d. Debe vender entre (10; 90) relojes.
- 6. Las variables

P(x): número de pacientes.

- a. Ingresan las pacientes al día $30(x_v = 30)$.
- b. El máximo de pacientes que ingreso fue de 8000 ($y_v = 8000$).
- c. Al día 6 de Julio había en el hospital 7820 pacientes.
- d. A los 15 y a los 45 días había 6875 pacientes en el hospital.
- 7. Las variables

y: velocidad
$$\binom{Km}{h}$$

x: distancia en Km

a.
$$y = -\frac{3}{2}x^2 + 48x - 168 =$$

- b. La velocidad máxima se alcanza a los 16 Km($x_v = 16$). Y esta es de 216 Km/h.
- c. Alcanza una velocidad de 196 Km/h en el kilómetro 12,35 y el 19,65.
- d. En el kilómetro 20 la velocidad alcanzada será de 192 Km/h.
- 8. Las variables

y: cantidad de gusanos.

$$x = d$$
ías transcurridos

- a. Se extinguirán a los 90 días.
- b. A los 10 días de iniciado el proceso habrá 800 gusanos.
- c. Se alcanzará los 656 gusanos a los 82 días.

Ejercicio 24 (Álgebra de las funciones)

a. Resolución.

Operración	Funcion	Dominio	Ord. Al origen	Polos	Positividad	Negatividad
	f(x) = x - 3	\mathbb{R}	y = -3	No tiene	(3;∞)	(-∞; 3)
	$g(x) = x^2$	\mathbb{R}	(0; 0)	No tiene	$(-\infty;\infty)$	
f+g	$x^2 + x - 3$	\mathbb{R}	y = -3	No tiene	$(-\infty; -2,3) \cup (1,3;\infty)$	(-2,3;1,3)
f-g	$x^2 + x - 3$	\mathbb{R}	y = -3	No tiene		(−∞;∞)
f * g	$x^3 - 3x^2$	\mathbb{R}	(0;0)	No tiene	(3;∞)	(-∞; 3)
f/g	$(x-3)/x^2$	$\mathbb{R}-\{0\}$	y = -3	x = 0	(3;∞)	(−∞; 3)

b. Resolución

Operación	Funcion	Dominio	Ord. Al Ori.	Polos	Positividad	Negatividad
	$f(x) = x^2 + 2x - 5$	\mathbb{R}	(0; -3)	No tiene	(-∞; -3,45) ∪ (1,45; ∞)	(-3,45; 1,45)
	$g(x) = 3x^2 - 1$	\mathbb{R}	(0;-1)	No tiene	$(-\infty; -0.58) \cup (0.58; \infty)$	(-0,58; 0,58)
f+g	$4x^2 + 2x - 6$	\mathbb{R}	y = -6	No tiene	(-∞; -1,5) ∪ (1;∞)	(-1,5; 1)
f-g	$-2x^2+2x-4$	\mathbb{R}	y = -4	No tiene		(-∞;∞)
f * g	$3x^4 + 6x^3 - 16x^2 - 2x + 5$	\mathbb{R}	(0,-5)	No tiene	$(-\infty; -3,45) \cup (-0,58; 0,58) \cup (1,45; \infty)$	(-3,45; -0,58) ∪ (0,58; 1,45)
f/g	$\frac{x^2 + 2x - 5}{3x^2 - 1}$	$\mathbb{R} - \left\{ -\frac{1}{\sqrt{3}}; \frac{1}{\sqrt{3}} \right\}$	<i>y</i> = 5	$x_1 = -\frac{1}{\sqrt{3}} \ ; x_2 = \frac{1}{\sqrt{3}}$	(-∞; -3,45) ∪ (1,45;∞)	(-3,45; 1,45)

c. Resolución

Operación	Funcion	Dominio	Ord. Al origen	Polos	Positividad	Negatividad
	$f(x) = \sqrt{4 - x^2}$	(-2; 2)	y = 2	No tiene	(-2; 2)	
	$g(x) = \sqrt{x+1}$	(-1;∞)	(0; 1)	No tiene	(−1;∞)	
f+g	$\sqrt{4-x^2}+\sqrt{x+1}$	(-1; 2)	y = 3	No tiene	(-1; 2)	
f-g	$\sqrt{4-x^2}-\sqrt{x+1}$	(-1; 2)	y = 1	No tiene	(-1; 1,79)	(1,79; 2)
f * g	$\sqrt{(4-x^2)*(x+1)}$	$(-\infty; -2] \cup [-1; 2]$	(0; 2)	No tiene	$(-\infty;-2)\cup(-1;2)$	
f/g	$\frac{\sqrt{4-x^2}}{\sqrt{(x+1)}}$	(-1; 2]	y = 2	No tiene	(-1; 2]	

d. Resolución

Operación	Funcion	Dominio	Ord. Al origen	Polos	Positividad	Negatividad
	$f(x) = \sqrt{9 - x^2}$	(-3;3)	y = 3	No tiene	(-3;3)	
	$f(x) = \sqrt{x^2 - 4}$	(-2; 2)	y = 2	No tiene	(-2; 2)	
f + g	$\sqrt{9-x^2}+\sqrt{x^2-4}$	$[-3;-2] \cup [2;3]$		No tiene	$[-3; -2] \cup [2; 3]$	
f-g	$\sqrt{9-x^2}-\sqrt{x^2-4}$	[-3; -2] ∪ [2; 3]		No tiene	$\left[-3; -\sqrt{\frac{13}{2}}\right) \cup \left(\sqrt{\frac{13}{2}}; 3\right]$	$\left[-\sqrt{\frac{13}{2}};-2)\cup(2;\sqrt{\frac{13}{2}}\right]$
f * g	$\sqrt{(9-x^2)*(x^2-4)}$	[-3; -2] ∪ [2; 3]		No tiene	[-3; -2] ∪ [2; 3]	
f/g	$\frac{\sqrt{9-x^2}}{\sqrt{x^2-4}}$	[-3; -2) \cup (2; 3]		No tiene	[-3; -2) ∪ (2; 3]	

e. Resolución

Operación	Funcion	Dominio	Ord. Al origen	Polos	Positividad	Negatividad
	f(x) = x/2	$\mathbb{R}-\{0\}$		x = 0	(0;∞)	(-∞; 0)
	$g(x) = \frac{4}{x+4}$	$\mathbb{R}-\{-4\}$	(0;1)	x = -4	(4;∞)	$(-\infty; -4)$
f + g	$\frac{6x+8}{x*(x+4)}$	$\mathbb{R}-\{0;-4\}$		x = 0 $x = -4$	$(-4; -\frac{4}{3}) \cup (0; \infty)$	$(-\infty; -4) \cup (-\frac{4}{3}; 0)$
f-g	$\frac{-2x+8}{x*(x+4)}$	$\mathbb{R}-\{0;-4\}$		x = 0 $x = -4$	$(-\infty; -4) \cup (0; 4)$	$(-4;0)\cup(4;\infty)$
f * g	$\frac{8}{x*(x+4)}$	$\mathbb{R}-\{0;-4\}$		x = 0 $x = -4$	(-∞; -4) ∪ (0; ∞)	(-4; 0)
f/g	$\frac{(x+4)}{2x}$	$\mathbb{R}-\{0\}$		x = 0	(-∞; -4) ∪ (0; ∞)	(-4; 0)

f. Resolución

Operación	Funcion	Dominio	Ord. Al origen	Polos	Positividad	Negatividad
	$f(x) = \frac{2}{x+1}$	$\mathbb{R}-\{-1\}$	(0; 2)	x = -1	(−1;∞)	(-∞; -1)
	$g(x) = \frac{x}{x+1}$	$\mathbb{R}-\{-1\}$	(0;0)	x = -1	$(-\infty;-1)\cup(0;\infty)$	(-1;0)
f + g	$\frac{2+x}{(x+1)}$	ℝ − {−1}	y = 2	x = -1	$(-\infty; -2) \cup (-1; \infty)$	(-2; -1)
f-g	$\frac{2-x}{(x+1)}$	$\mathbb{R}-\{-1\}$	y = 2	x = -1	(-1; 2)	(-∞; -1) ∪ (2; ∞)
f * g	$\frac{2x}{(x+1)^2}$	ℝ - {-1}	(0;0)	x = -1	(0;∞)	(-∞; -1) ∪ (-1;0)
f/g	$\frac{2}{x}$	$\mathbb{R}-\{0\}$		x = 0	(0;∞)	(−∞; 0)

Ejercicio 25 (Composición de funciones)

a. Resolución

Operación	Funcion	Dominio	Ceros	Ord. Al origen	Polos	Positividad	Negatividad
	f(x) = 2x + 3	\mathbb{R}	$x = -\frac{3}{2}$	(0;3)	No tiene	$\left(-\frac{3}{2};\infty\right)$	$(-\infty; -\frac{3}{2})$
	g(x) = 4x - 1	\mathbb{R}	$x = \frac{1}{4}$	y = -1	No tiene	$(\frac{1}{4};\infty)$	$\left(-\infty;\frac{1}{4}\right)$
f(g(x))	8x + 1	\mathbb{R}	$x = -\frac{1}{8}$	(0; 1)	No tiene	$\left(-\frac{1}{8};\infty\right)$	$\left(-\infty;-\frac{1}{8}\right)$
g(f(x))	8x + 11	\mathbb{R}	$x = -\frac{11}{8}$	y = 11	No tiene	$\left(-\frac{11}{8};\infty\right)$	$\left(-\infty; -\frac{11}{8}\right)$
f(f(x))	4x + 9	\mathbb{R}	$x = -\frac{9}{4}$	(0; 9)	No tiene	$\left(-\frac{9}{4};\infty\right)$	$\left(-\infty;-\frac{9}{4}\right)$
g(g(x))	16x + 5	\mathbb{R}	$x = -\frac{5}{16}$	y = 5	No tiene	$\left(-\frac{5}{16};\infty\right)$	$(-\infty; -\frac{5}{16})$

b. Resolución

Operación	Funcion	Dominio	Ceros	Ord. Al origen	Polos	Positividad	Negatividad
	f(x) = 6x - 5	\mathbb{R}	$x = \frac{5}{6}$	(0; -5)	No tiene	$(\frac{5}{6};\infty)$	$(-\infty;\frac{5}{6})$
	$g(x) = \frac{x}{2}$	\mathbb{R}	x = 0	y = 0	No tiene	(0;∞)	(-∞; 0)
f(g(x))	3 <i>x</i> –5	\mathbb{R}	$x = \frac{5}{3}$	(0; -5)	No tiene	$(\frac{5}{3};\infty)$	$(-\infty;\frac{5}{3})$
g(f(x))	$3x-\frac{5}{2}$	R	$x = \frac{15}{2}$	$y = -\frac{5}{2}$	No tiene	$(\frac{15}{2};\infty)$	$(-\infty;\frac{15}{2})$
f(f(x))	36 <i>x</i> −35	\mathbb{R}	$x = \frac{35}{36}$	(0; -35)	No tiene	$(\frac{35}{36};\infty)$	$\left(-\infty; \frac{35}{36}\right)$
g(g(x))	$g(x) = \frac{x}{4}$	\mathbb{R}	x = 0	y = 0	No tiene	(0;∞)	(-∞; 0)

c. Resolución

Operación Funcion		Dominio	Ceros	Ord. Al origen	Polos	Positividad	Negatividad
	$f(x) = x^2$	\mathbb{R}	x = 0	(0; 0)	No tiene	(−∞;∞)	
	g(x) = x + 1	\mathbb{R}	x = -1	y = 1	No tiene	(−1;∞)	(-∞; -1)
f(g(x))	$(x+1)^2$	\mathbb{R}	x = -1	(0; 1)	No tiene	$(-\infty;\infty)$	
g(f(x))	$x^2 + 1$	\mathbb{R}		y = 1	No tiene	(−∞;∞)	
f(f(x))	<i>x</i> ⁴	\mathbb{R}	x = -2	(0; 2)	No tiene	(-2;∞)	(-∞; -2)
g(g(x))	<i>x</i> + 2	\mathbb{R}	x = 0	y = 0	No tiene	(−∞;∞)	

d. Resolución

Operación	Funcion	Dominio	Ceros	Ord. Al origen	Polos	Positividad	Negatividad
	$f(x) = x^3 + 2$	\mathbb{R}	$x = \sqrt[3]{-2}$	(0; 2)	No tiene	$(\sqrt[3]{-2};\infty)$	$(-\infty; \sqrt[3]{-2})$
	$g(x) = \sqrt[3]{x}$	\mathbb{R} $x = 0$		y = 0 No tiene		(0;∞)	(-∞; 0)
f(g(x))	<i>x</i> + 2	\mathbb{R}	x = -2	(0; 2)	No tiene	(-2;∞)	(-∞; -2)
g(f(x))	$\sqrt[3]{x^3+2}$	\mathbb{R}	$x = \sqrt[3]{-2}$	$y=\sqrt[3]{2}$	No tiene	$(\sqrt[3]{-2}; \infty)$	$(-\infty; \sqrt[3]{-2})$
f(f(x))	$(x^3+2)^3+2$	\mathbb{R}	x = -1,48	(0; 10)	No tiene	(−1,48; ∞)	(-∞; -1,48)
g(g(x))	$\sqrt[9]{x}$	\mathbb{R}	x = 0	y = 0	No tiene	(-∞;0)	(0;∞)

Ejercicio 26 (Función inversa)

a. Resolución

Operación	Funcion	Dominio	Imagen	Ceros	Ord. Al origen	Polos	Positividad	Negatividad
	f(x) = 2x + 1	\mathbb{R}	\mathbb{R}	$x = -\frac{1}{2}$	(0;1)	No tiene	$\left(-\frac{1}{2};\infty\right)$	$(-\infty; -\frac{1}{2})$
$f^{-1}(x)$	$\frac{x}{2} - \frac{1}{2}$	\mathbb{R}	\mathbb{R}	x = 1	$y = -\frac{1}{2}$	No tiene	(1;∞)	(-∞; 1)

b. Resolución

Operación	Funcion	Dominio	Imagen	Ceros	Ord. Al origen	Polos	Positividad	Negatividad
	$f(x) = \frac{1}{x+2}$	$\mathbb{R}-\{-2\}$	$\mathbb{R}-\{0\}$		$(0;\frac{1}{2})$	x = -2	(−2;∞)	(-∞; -2)
$f^{-1}(x)$	$\frac{1}{x}$ – 2	$\mathbb{R}-\{0\}$	$\mathbb{R}-\{-2\}$	$x = \frac{1}{2}$		x = 0	$(-\infty;0)\cup(^1\!/_2;\infty)$	(0; ¹ / ₂)

c. Resolución

Operación	Funcion	Dominio	Imagen	Ceros	Ord. Al origen	Polos	Positividad	Negatividad
	f(x) = 6 - x	\mathbb{R}	\mathbb{R}	<i>x</i> = 6	(0; 6)	No tiene	(−∞; 6)	(6;∞)
$f^{-1}(x)$	6 <i>- x</i>	R	R	<i>x</i> = 6	<i>y</i> = 6	No tiene	(-∞; 6)	(6;∞)

d. Resolución

Operación	Funcion	Dominio	Imagen	Ceros	Ord. Al origen	Polos	Positividad	Negatividad
	$f(x) = \frac{x-2}{x+2}$		$\mathbb{R}-\{-1\}$	x = 2	(0; -1)	x = -2	$(-\infty;-2)\cup(2;\infty)$	(-2; 2)
$f^{-1}(x)$	$\frac{-(2x+2)}{x-1}$	$\mathbb{R}-\{1\}$	ℝ − {−2}	x = -1	y = 2	<i>x</i> = 1	(-1;1)	(-∞; -1) ∪ (1; ∞)

e. Por no ser una función uno a uno no admite inversa.

f. Resolución

Operación	Funcion	Dominio	Imagen	Ceros	Ord. Al origen	Polos	Positividad	Negatividad
	$f(x) = \frac{1+3x}{5-2x}$	$\mathbb{R}-\left\{\frac{5}{2}\right\}$	$\mathbb{R} - \left\{ -\frac{3}{2} \right\}$	$x = \frac{1}{3}$	$(0;\frac{1}{5})$	$x = \frac{5}{2}$	$(\frac{1}{3}; \frac{5}{2})$	$(-\infty;\frac{1}{3}) \cup (\frac{5}{2};\infty)$
$f^{-1}(x)$	$\frac{1-5x}{-(2x+3)}$	$\mathbb{R} - \left\{ -\frac{3}{2} \right\}$	$\mathbb{R} - \left\{ \frac{5}{2} \right\}$	$x = \frac{1}{5}$	$y = \frac{1}{3}$	$x = -\frac{3}{2}$	$(-\infty; -\frac{3}{2}) \cup (\frac{1}{5}; \infty)$	$(-\frac{3}{2};\frac{1}{5})$

g. Resolución

Operación	Funcion	Dominio	Imagen	Ceros	Ord. Al origen	Polos	Positividad	Negatividad
	$f(x) = \frac{x}{2}$	\mathbb{R}	\mathbb{R}	x = 0	(0;0)	No tiene	(0;∞)	(-∞;0)
$f^{-1}(x)$	2 <i>x</i>	\mathbb{R}	\mathbb{R}	x = 0	y = 0	No tiene	(0;∞)	(−∞; 0)

h. Resolución

Operación	Funcion	Dominio	Imagen	Ceros	Ord. Al origen	Polos	Positividad	Negatividad
	$f(x) = 5 - 4x^3$	\mathbb{R}	R	$x = \sqrt[3]{\frac{5}{4}}$	(0; 5)	No tiene	$(-\infty; \sqrt[3]{\frac{5}{4}})$	$(\sqrt[3]{\frac{5}{4}};\infty)$
$f^{-1}(x)$	$-\sqrt[3]{\frac{x-5}{4}}$	\mathbb{R}	\mathbb{R}	x = 5	$y = \sqrt[3]{\frac{5}{4}}$	No tiene	(-∞;5)	(5;∞)

i. La función no es uno a uno entonces no admite inversa

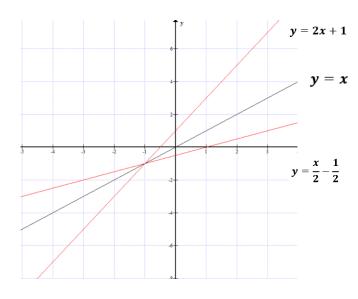
j. Resolución

Operación	Funcion	Dominio	Imagen	Ceros	Ord. Al origen	Polos	Positividad	Negatividad
	$f(x) = \sqrt{2 + 5x}$	$\left(-\frac{2}{5};\infty\right)$	R +	$x = -\frac{2}{5}$	(0;5)	No tiene	$\left(-\frac{2}{5};\infty\right)$	
$f^{-1}(x)$	$\frac{x^2-2}{5}$	R ⁺	$\left(-\frac{2}{5};\infty\right)$	$x = \sqrt{2}$	$y = -\frac{2}{5}$	No tiene	$(\sqrt{2};\infty)$	$(0;\sqrt{2})$

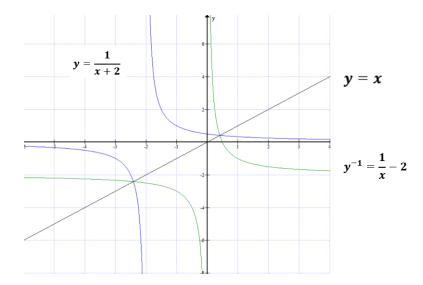
Note que de la función inversa se restringió el dominio a los reales positivos.

<u>Gráficas</u>

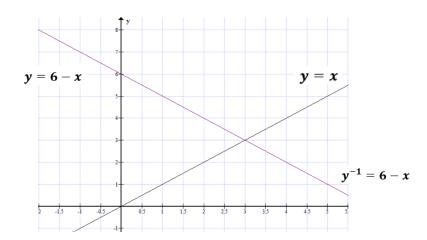
a.



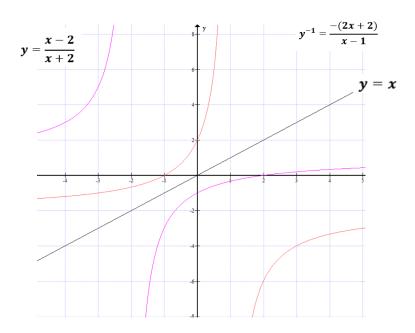
b. .



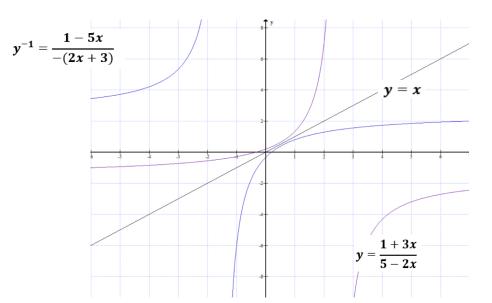
c. .



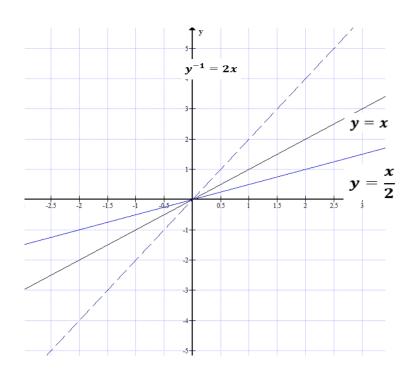
d. .



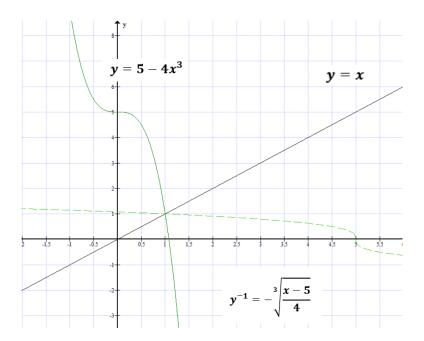
f. .



g. .



h. .



j.

