

Trabajo Práctico Nº1: Funciones y Modelos

Objetivo: que el estudiante adquiera las nociones fundamentales sobre distintos tipos de funciones, qué son, su dominio e imagen, cómo se dibujan sus gráficas, cómo se combinan y se transforman, así como sus formas de clasificación. Que incorpore, además, el concepto de función inversa y pueda obtenerla en aquellos casos en que sea posible.

NOTA AL ESTUDIANTE: en las Partes A y B encontrará ejercicios a resolver en clase práctica. Se sugiere que los ejercicios propuestos en la Parte C, se resuelvan en forma completa por el estudiante como trabajo extra-áulico. Las dudas pueden ser resueltas con cualquiera de los profesores de la materia Cálculo/Elementos de Cálculo I en las horas de consulta. Se recomienda, además, disponer de alguna herramienta de graficación contra la cual comparar los resultados obtenidos en el desarrollo "manual" de cada ejercicio.

PARTE A: Ejercicios Comunes a Cálculo/Elementos

1. Elabore la gráfica de cada una de las siguientes ecuaciones mediante el trazado de puntos y luego mediante alguna herramienta de graficación. Puede utilizar www.wolframalpha.com o Geogebra.

a.
$$y = (x - 3)^2$$

b.
$$y = |x| - 1$$
 c. $|y| - x = 3$ d. $y = x^3 - 4x$

c.
$$|y| - x = 3$$

d.
$$y = x^3 - 4x$$

e.
$$y = (x-1)\sqrt{x^2+1}$$
 f. $y = \frac{10}{x^2+1}$ g. $x^2 + 4y^2 = 4$

f.
$$y = \frac{10}{x^2 + 1}$$

g.
$$x^2 + 4y^2 = 4$$

- 2. Para cada una de las expresiones del ejercicio 1:
 - 2.1. Encuentre analíticamente las intersecciones con los ejes.
 - 2.2. Determine simetría respecto de cada uno de los ejes y del origen.
 - 2.3. Determine si es o no función de x.
- 3. Para cada par de expresiones encuentre analíticamente los puntos de intersección de sus gráficas. Verificar lo hallado gráficamente (puede utilizar una herramienta de graficación).

a.
$$3x - 2y = -4$$

 $4x + 2y = -10$

b.
$$x = 3 - y^2$$

 $y = x - 10$

c.
$$x^2 + y^2 = 25$$

 $-3x + y = 15$

- 4. Si $f(x) = 2x^2 + 3x 4$, encuentre f(0), $f(\sqrt{2})$, f(-x), f(x+1), 2f(x) y f(2x).
- 5. Si $f(x) = x x^2$, encuentre f(2+h), f(x+h) y $\frac{f(x+h)-f(x)}{h}$, donde $h \neq 0$.
- Encuentre el dominio de las siguientes funciones:

a.
$$f(x) = \frac{x+2}{x^2-1}$$

a.
$$f(x) = \frac{x+2}{x^2-1}$$
 b. $f(x) = \sqrt[4]{x^2-6x}$ c. $f(x) = \sqrt{3x-12}$

c.
$$f(x) = \sqrt{3x - 12}$$

7. Encuentre el dominio y trace la gráfica de las siguientes funciones:

a.
$$g(x) = \frac{x}{|x|}$$

b.
$$p(x) = \begin{cases} -1 & \text{si } x \le -1 \\ 3x + 2 & \text{si } |x| < 1 \\ 7 - 2x & \text{si } x \ge 1 \end{cases}$$

8. Encuentre el rango y el dominio de cada función dada.

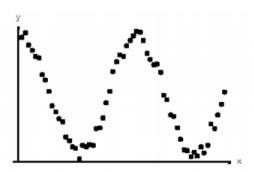
a.
$$f(t) = \frac{1}{|t^2 - 4|}$$

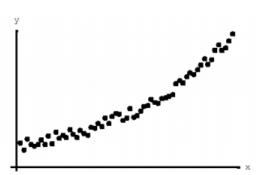
b.
$$f(x) = -\sqrt{x+3}$$
 c. $f(t) = \cot(t)$

c.
$$f(t) = cot(t)$$

9. Exprese la hipotenusa h de un triángulo rectángulo con un área de 25 m^2 , en función de su perímetro P.

10. Una caja rectangular abierta, con volumen de 2 m³, tiene una base cuadrada. Exprese el área superficial de la caja como función de la longitud de uno de los lados de la base.

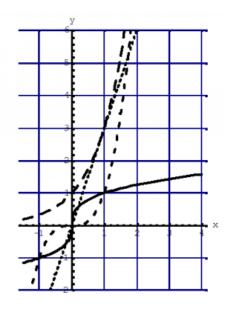

11. Si se cuenta con 1.200 cm2 de material para hacer una caja con base cuadrada y la parte superior abierta, exprese el volumen V de dicha caja en función de la longitud de uno de los lados de su base.


12. En condiciones ideales, se sabe que cierta población de bacterias se duplica cada tres horas. Suponga que primero hay 100 UFC (unidades formadoras de colonias), Responda:

a. ¿Cuál es el tamaño de la población de después de t horas? y luego de 15 horas?

b. Bosqueje la función de la población y estime el tiempo para que la población llegue a 50.000 UFC.

13. Para cada diagrama de dispersión decida qué tipo de función podría elegir para modelar los datos. Explique su elección.


14. Coteje gráficas y funciones. Explique su decisión en cada caso.

(i)
$$v = 3x$$

(ii)
$$y = 3^x$$

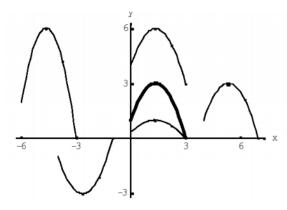
(iii)
$$y = x^3$$

(i)
$$y = 3x$$
 (ii) $y = 3^x$ (iv) $y = \sqrt[3]{x}$

15. Explique cómo se obtienen las gráficas siguientes a partir de la gráfica de y = f(x)

a.
$$y = 5 f(x)$$

a.
$$y = 5 f(x)$$
 b. $y = f(x-5)$ c. $y = -f(x)$


c.
$$y = -f(x)$$

d.
$$y = -5f(x)$$

e.
$$y = f(5x)$$

d.
$$y = -5f(x)$$
 e. $y = f(5x)$ f. $y = 5f(x) - 3$

16. La gráfica de y = f(x) está dada en la siguiente figura. Cotejar cada ecuación con una su gráfica y dar razones apropiadas para hacerlo.

$$a. \quad y = f(x-4)$$

$$b. \quad y = f(x) + 3$$

a.
$$y = f(x-4)$$
 b. $y = f(x) + 3$ c. $y = \frac{1}{3}f(x)$

d.
$$y = 2f(x+6)$$
 e. $y = -f(x+4)$

$$e. y = -f(x+4)$$

17. Grafique cada función, no por la colocación de puntos, sino a partir de la gráfica de una de las <u>funciones estándar dadas</u> y, a continuación, aplicando trasformaciones apropiadas.

a.
$$y = cos\left(\frac{x}{2}\right)$$

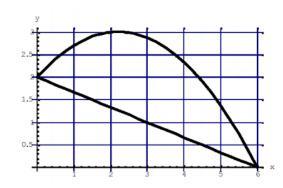
b.
$$y = 2 + \frac{1}{x+1}$$
 c. $y = |\cos x|$ d. $y = 3^{-x}$ e. $y = ln(-x)$

c.
$$y = |\cos x|$$

d.
$$y = 3^{-x}$$

$$e. \quad y = ln(-x)$$

18. Dada $f(x) = x^3 - x$, determine si f es par, impar o ninguna de las dos cosas. Si f es par o impar, aplique la simetría para trazar su gráfica.


- 19. Sea $f: A \rightarrow IR$, la indicada en cada ítem. Represente gráficamente cada una de ellas e indique:
 - a. Intervalos para los cuales la función es creciente o decreciente.
 - b. Si f es par, impar o ninguna de las dos cosas.

a.
$$h(x) = \log_{1/3}(x)$$

b.
$$m(x) = sen(x + \pi)$$
 c. $l(x) = \frac{1}{(x+1)^2}$

c.
$$l(x) = \frac{1}{(x+1)^2}$$

20. Bosqueje la gráfica de f + g por adición gráfica

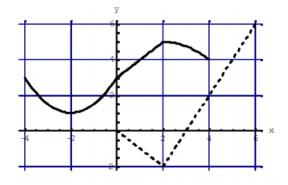
- 21. Dadas las funciones $f(x) = x^3 + 2x^2$ y $g(x) = 3x^2 1$, encuentre f + g, f g, fg y f/g y dé sus dominios.
- 22. Encuentre las funciones $f \circ g$, $g \circ f$, $f \circ f \vee g \circ g$, así como sus dominios.

a.
$$f(x) = \frac{1}{x}$$
, $g(x) = x^3 + 2x$

b.
$$f(x) = sen x$$
, $g(x) = 1 - \sqrt{x}$

23. Use las gráficas dadas de f y g para evaluar cada expresión, o bien, explique por qué no está definida.

a.
$$f(g(2))$$


b.
$$g(f(0))$$

c.
$$(f \circ g)(0)$$

d.
$$(g \ o \ f)(6)$$

e.
$$(g \ o \ g)(-2)$$

f.
$$(f \circ f)(4)$$

- 24. Si f es una función uno a uno tal que f(2) = 9, ¿cuál es $f^{-1}(9)$?
- 25. Halle una fórmula para la inversa de la función.

a.
$$f(x) = 5 - 4x^3$$

b.
$$f(x) = \sqrt{2 + 5x}$$

b.
$$f(x) = \sqrt{2+5x}$$
 c. $f(x) = ln(x+3)$

- 26. Si una población de bacterias comenzó con $100\ UFC$ y se duplica cada tres horas, la cantidad de ejemplares después de t horas es $n = f(t) = 100.2^{t/3}$. Encuentre la inversa de esta función y explique su significado.
- 27. Sabiendo que: $f(x) = 2^x$ y $g(x) = \log_2 x$ son funciones inversas, realizar la composición $(f \circ g)$

 $y(g \circ f)$ para verificar si se obtiene la identidad.

28. Sean f y g dos funciones con dominio R. Complete el cuadro indicando en cada caso si f+g es par, impar o ninguna de las dos cosas. Justifique su respuesta.

	g es par	g es impar	
	f + g es	f + g es	
f es par	<i>f</i> . <i>g</i> es	<i>f.g</i> es	
	f o g es	<i>f o g</i> es	
f es impar	<i>f</i> + <i>g</i> es	<i>f</i> + <i>g</i> es	
	<i>f</i> . <i>g</i> es	<i>f.g</i> es	
	f o g es	f o g es	

PARTE B: Ejercicios Adicionales Cálculo

29. Sea
$$g(x) = x^2$$
 y sea $h(x) = \begin{cases} 0 & x \ racional \\ 1 & x \ irracional \end{cases}$

- a. ¿Para cuáles x se cumple qué $h(x) \le x$?
- b. ¿Para cuáles x se cumple qué $h(x) \leq g(x)$?
- c. ¿Qué es g(h(x)) h(x)?
- d. ¿Para cuáles x se cumple qué g(g(x)) = g(x)?
- 30. Supóngase que g = h(f(x)) ó $g = h \circ f$. Demuestre que si f(x) = f(y), entonces $g(x) \neq g(y)$.
- 31. Sea $C(x) = x^2$; $P(x) = \frac{1}{x}y$ $S(x) = \sin x$ Determinar: C(P(S(t)) + S(P(t))
- 32. Exprese cada una de las siguientes funciones en términos de C, P, S.

a.
$$f(x) = \frac{1}{\sin(x^2)}$$
 b. $f(u) = \left(\sin\left(\frac{1}{u}\right)\right)^2$

- 33. Determine si las siguientes afirmaciones son verdaderas o falsas. Donde f, g y h son las funciones definidas en todo \mathbb{R} .
 - A. Si f y g son pares, entonces f + g es par.
 - B. Si f es par y g es impar, entonces f+g es impar.
 - C. Si f y g son impares, entonces $f \ast g$ es par.
 - D. Si f y g son impares, entonces f(g(x)) es par.
 - E. La función |f| es par.
 - F. La función f(|fx|) es par.
 - G. F(g+h) = f(g) + f(h).
 - H. $\frac{1}{f(g)} = \frac{1}{f} * g$

34. Halle f^{-1} para cada una de las siguientes funciones, e indicar su dominio.

a.
$$\begin{cases} x \sin x \in \mathbb{Q} \\ -x \sin x \notin \mathbb{Q} \end{cases}$$

b.
$$\begin{cases} -\frac{1}{2-x} si \ x \neq 2 \\ 0 \ si \ x = 2 \end{cases}$$
 c.
$$\begin{cases} \frac{1}{2} x si \ x < 0 \\ 2x \ si \ x \ge 0 \end{cases}$$

$$c. \begin{cases} \frac{1}{2}x \sin x < 0 \\ 2x \sin x \ge 0 \end{cases}$$

PARTE C: Ejercicios Extra-áulicos

Comunes a Cálculo/Elementos

1. Dadas las siguientes expresiones:

a.
$$y = x^2 - x$$

b.
$$y = \frac{1}{x+2}$$

c.
$$y = \frac{x^2}{x^2 + 1}$$

a.
$$y = x^2 - x$$
 b. $y = \frac{1}{x+2}$ c. $y = \frac{x^2}{x^2+1}$ d. $y = \frac{x^2+3x}{(3x+1)^2}$

e.
$$v = \sqrt{x+2}$$

e.
$$y = \sqrt{x+2}$$
 f. $y^2 = x^3 - 4x$ g. $xy^2 = -10$ h. $x = y^2 - 4$

g.
$$xy^2 = -10$$

h.
$$x = y^2 - 4$$

i.
$$xy - \sqrt{4 - x^2} = 0$$

i.
$$xy - \sqrt{4 - x^2} = 0$$
 j. $y = 2x - \sqrt{x^2 + 1}$ k. $3x - 4y^2 = 8$

k.
$$3x - 4v^2 = 8$$

- 1.1. Encuentre analíticamente todas las intersecciones con los ejes.
- 1.2. Determine si existe simetría respecto de cada uno de los ejes y del origen.
- 1.3. Elabore la gráfica a partir de la información obtenida. Verifique el resultado mediante alguna herramienta de graficación. Puede utilizar www.wolframalpha.com o Geogebra.
- 1.4. Determine si la ecuación dada es una función de x o no.
- Indique el dominio de las siguientes funciones:

a.
$$f(x) = \frac{x-2}{x^3+x}$$

a.
$$f(x) = \frac{x-2}{x^3+x}$$
 b. $f(x) = \frac{3x^2-2}{x^2+1}$ c. $f(x) = \frac{1}{\sqrt{x^2-4}}$

c.
$$f(x) = \frac{1}{\sqrt{x^2 - 4}}$$

Encuentre el dominio y trace la gráfica de las siguientes funciones:

a.
$$f(x) = \sqrt{x-5}$$

c.
$$m(x) = \begin{cases} 2x + 3 & \text{si } x < -1 \\ 3 - x & \text{si } x \ge -1 \end{cases}$$

b.
$$n(x) = \begin{cases} x + 2 & \text{si } x \le -1 \\ x^2 & \text{si } x > -1 \end{cases}$$

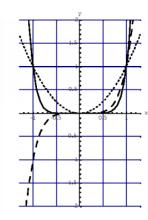
d.
$$h(x) = \begin{cases} x & \text{si } x \le 0 \\ x+1 & \text{si } x > 0 \end{cases}$$

Encuentre el rango y el dominio de cada función dada.

$$f(x) = x^2 - 5$$

b.
$$g(x) = \begin{cases} x^2 + 2, & x \le 0 \\ 2x^2 + 2, & x > 1 \end{cases}$$

b.
$$g(x) = \begin{cases} x^2 + 2, & x \le 0 \\ 2x^2 + 2, & x > 1 \end{cases}$$
 c. $h(x) = \begin{cases} \sqrt{x+4}, & x \le 5 \\ (x-5)^2, & x > 5 \end{cases}$


- 5. Cuando el aire seco se eleva, se expande y enfría. Si la temperatura en el suelo es de 20ºC y la temperatura a un kilómetro es de 10ºC:
 - a. Exprese la temperatura T (en grados Celsius) en función de la altura h (en kilómetros) suponiendo que un modelo lineal es apropiado.
 - b. Trace la gráfica de la función hallada en el ítem a. y analice qué representa la pendiente.

- c. Calcule cuál es la temperatura a una altitud de 2,5 km.
- 6. Uno de los catetos de un triángulo rectángulo tiene una longitud de 4 cm. Exprese la longitud de la altura perpendicular a la hipotenusa como función de la longitud de esta última.
- Se va a producir una lata de forma cilíndrica para que contenga $1\,l$ de aceite. Determine una expresión para el área superficial total de dicha lata en función de la longitud del radio de su base.
- Coteje gráficas y funciones. Explique su decisión en cada caso.

(i)
$$y = x^2$$

(ii)
$$y = x^5$$

(iii)
$$y = x^8$$

9. Utilice la gráfica de $f(x) = x^2$ para graficar las siguientes funciones mediante transformaciones de la misma. Describa las transformaciones realizadas.

a.
$$g(x) = (x+3)^2$$

b.
$$g(x) = 2(x-2)^2$$

c.
$$g(x) = \frac{1}{3}x^2 - 3$$

a.
$$g(x) = (x+3)^2$$
 b. $g(x) = 2(x-2)^2$ c. $g(x) = \frac{1}{3}x^2 - 1$ d. $g(x) = 4(x-2)^2 + 2$

10. Utilice la gráfica de $f(x) = \sqrt{x}$ para graficar las siguientes funciones mediante transformaciones de la misma. Describa las transformaciones realizadas.

a.
$$g(x) = \sqrt{x} + 2$$

b.
$$g(x) = \sqrt{x - 2}$$

c.
$$g(x) = 2\sqrt{x+1} - 4$$

a.
$$g(x) = \sqrt{x} + 2$$
 b. $g(x) = \sqrt{x-2}$ c. $g(x) = 2\sqrt{x+1} - 4$ d. $g(x) = \frac{1}{2}\sqrt{x-1} + 2$

11. Utilice la gráfica de f(x) = |x| para graficar las siguientes funciones mediante transformaciones de la misma. Describa las transformaciones realizadas.

a.
$$g(x) = |x| - 5$$

b.
$$g(x) = -|x - 4|$$

a.
$$g(x) = |x| - 5$$
 b. $g(x) = -|x - 4|$ c. $g(x) = |x - 1| + 3$

12. Utilice la gráfica de f(x) = sen x para graficar las siguientes funciones mediante transformaciones de la misma. Describa las transformaciones realizadas.

a.
$$g(x) = sen(x + \frac{\pi}{2}) + 1$$
 b. $g(x) = -sen x - 1$

b.
$$g(x) = -sen x - 1$$

13. Grafique cada función, a partir de la gráfica de una de las funciones estándar dadas y, a continuación, aplicando trasformaciones apropiadas.

a.
$$y = -3^{-x}$$

b.
$$y = 2^x + 1$$

c.
$$y = (x-1)^3 + 2$$

14. Con base en la gráfica de $y = e^x$, escriba la ecuación de la gráfica que se obtiene de:

- a. Desplazarla 2 unidades hacia abajo.
- b. Desplazarla 2 unidades a la derecha.
- c. Reflejarla respecto del eje x.
- d. Reflejarla respecto al eje x y, a continuación, respecto al eje y.

15. Responda:

- a. Si el punto (5,3) está en la gráfica de una función par, ¿Cuál otro punto también debe estar sobre la gráfica?
- b. Si el punto (5,3) está en la gráfica de una función impar, ¿Cuál otro punto también debe estar sobre la gráfica?
- 16. Determine si las siguientes funciones son pares, impares o ninguna de las dos.

a.
$$f(x) = x^2(4 - x^2)$$
 b. $f(x) = \sqrt[3]{x}$ c. $f(x) = x\cos x$ d. $f(x) = \sin^2 x$

b.
$$f(x) = \sqrt[3]{x}$$

c.
$$f(x) = x\cos x$$

d.
$$f(x) = sen^2 x$$

17. Exprese la función en forma de $f\ o\ g$, ó $f\ o\ g\ o\ h$, según corresponda.

a.
$$f(x) = (x - 9)^5$$

b.
$$u(t) = \sqrt{\cos t}$$

c.
$$h(x) = 1 - 3^{x^3}$$

18. Dadas f(x) y g(x) encuentre las funciones compuestas (f o g) y (g o f). ¿Son iguales? ¿Cuál es el dominio de cada función compuesta?

a.
$$f(x) = \sqrt{x}$$
, $g(x) = x^2 - 1$

a.
$$f(x) = \sqrt{x}$$
, $g(x) = x^2 - 1$ b. $f(x) = x^2 - 1$, $g(x) = \cos x$

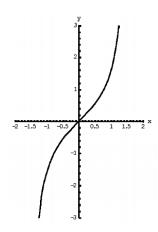
c.
$$f(x) = \frac{1}{x}$$
, $g(x) = \sqrt{x+2}$ d. $f(x) = \sin x$, $g(x) = \pi x$

$$d. \quad f(x) = sen \ x, \ g(x) = \pi x$$

19. Exprese la función en forma de $f \circ g$, ó $f \circ g \circ h$, según corresponda.

a.
$$f(x) = sec^4(\sqrt{x})$$
,

b.
$$g(x) = \frac{x^2}{x^2 + 1}$$


20. Halle una fórmula para la inversa de la función.

a.
$$f(x) = 2 - 3x^5$$
 b. $f(x) = 3^{-x}$

b.
$$f(x) = 3^{-x}$$

c.
$$f(x) = -2^x$$

21. Use la gráfica dada de f para graficar f^{-1} .

22. Grafique y determine el dominio y Rango de las siguientes funciones, intersecciones con los ejes xe y; intervalos de crecimiento y decrecimiento; asíntotas (cuando corresponda)

a.
$$y = 3 - 2^x$$

b.
$$y = \frac{1}{2}e^{-x} - 1$$

c.
$$y = 10^{x+2}$$

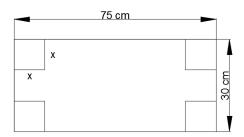
d.
$$y = -2^{(-x)}$$

a.
$$y = 3 - 2^x$$
 b. $y = \frac{1}{2}e^{-x} - 1$ c. $y = 10^{x+2}$ d. $y = -2^{(-x)}$ e. $y = 1 - \frac{1}{2}e^{(-x)}$ f. $y = 3^{|x|}$ g. $y = \ln(x-2) - 1$ h. $y = -\ln x$ i. $y = \log_3(x+3)$ j. $y = \ln(-x)$

f.
$$y = 3^{|x|}$$

g.
$$y = ln(x-2) - 1$$

$$h. \quad y = -\ln x$$


i.
$$y = log_3(x + 3)$$

$$y = ln(-x)$$

- 23. Un rectángulo tiene 20 m de perímetro. Exprese el área de rectángulo como función de la longitud de uno de sus lados.
- 24. Exprese el área de la superficie de un cubo como función de su volumen.

Ejercicios Adicionales Cálculo

25. Se forma una caja sin tapa a partir de una pieza rectangular de cartón de 30 cm por 75 cm, cortando cuadrados iguales de lado x, en cada esquina, para doblar arriba los rectángulos como se ve en la figura. Exprese el volumen, V de la caja en función de x.

- 26. Una unión de taxistas cobra \$2 por el primer kilómetro (o fracción) y 20 centavos por cada décimo de kilómetro (o fracción) siguiente. Indicar el costo, C, de un viaje en taxi en función de la distancia x; recorrida en kilómetros, para $0 < x \le 2$ y trace la gráfica de esta función.
- 27. En la siguiente tabla aparece la población P de una ciudad, en miles de habitantes; de 1970 a 1980.

t	1970	1972	1974	1976	1978	1980
Р	71	73	78	87	102	123

- a. Trace la gráfica de P en función del tiempo t.
- b. Con la gráfica estime la población de 1979.
- 28. Encuentre el dominio de las funciones definidas por las siguientes fórmulas:

a.
$$f(x) = \frac{1}{x-1} + \frac{1}{x-2}$$
 b. $f(x) = \sqrt{1 - \sqrt{1 - x^2}}$ c. $f(x) = (\sqrt{x})^2$ d. $f(x) = \sqrt{1 - x^2}$

$$f(x) = \sqrt{1 - \sqrt{1 - x^2}}$$

c.
$$f(x) = \left(\sqrt{x}\right)^2$$

$$d. \quad f(x) = \sqrt{1 - x^2}$$

- 29. Responda:
 - a. Sea f(x) = x + 1 ¿Existe una función g tal que f(g) = g(f)?
 - b. Sea f una función constante. ¿Para qué funciones g se cumple f(g) = g(f)?

- c. Supongamos que g es una función tal que f(g) = g(f) para toda función f. Demuestre que g es la función identidad.
- 30. Sea

$$f(x) = \begin{cases} x+1 & 0 \le x < 1 \\ -x+3 & 1 \le x < 4 \\ \frac{1}{2}x-3 & 4 \le x \le 6 \end{cases}$$

Graficar la función g(x) donde:

a.
$$g(x) = f(x)$$

b.
$$g(x) = 2f(x)$$

a.
$$g(x) = f(x)$$
 b. $g(x) = 2f(x)$ c. $g(x) = f(1/2x)$

$$d. g(x) = -f(x)$$

e.
$$g(x) = f(-x)$$

d.
$$g(x) = -f(x)$$
 e. $g(x) = f(-x)$ f. $g(x) = f(x) + 2$

g.
$$g(x) = |f(x)|$$

g.
$$g(x) = |f(x)|$$
 h. $g(x) = f(x) - 1$ i. $g(x) = f(2x)$

i.
$$g(x) = f(2x)$$

31. Esboce la gráfica de las siguientes funciones, dar su dominio y analizar si son inyectivas y/o suryectivas, donde el conjunto de llegada es R.

a.
$$d(t) = |t - 3|$$

b.
$$c(t) = -t^2 + 1$$

a.
$$d(t) = |t - 3|$$
 b. $c(t) = -t^2 + 1$ c. $w(t) = (sin(t))^2$ d. $v(x) = |sin x|$

d.
$$v(x) = |\sin x|$$

e.
$$b(x) = 3x^2 + 2x - 1$$
 f. $x(t) = \frac{1}{|t|}$ g. $f(x) = \sqrt{x+1}$

$$f. \ x(t) = \frac{1}{|t|}$$

g.
$$f(x) = \sqrt{x+1}$$

32. Si $x \in \mathbb{R}$, denotamos [x] el mayor entero menor o igual a x, $\{x\}$ la distancia de x al entero más próximo. Notar.

$${x} = min(x - [x], [x] + 1 - x)$$

Grafique las siguientes funciones:

a.
$$f(x) = [x]$$

$$b. \quad f(x) = \left[\frac{1}{x}\right]$$

$$c. \quad f(x) = x - [x]$$

d.
$$f(x) = \{x\}$$

e.
$$f(x) = \sqrt{x - [x]}$$

b.
$$f(x) = \left[\frac{1}{x}\right]$$
 c. $f(x) = x - [x]$
e. $f(x) = \sqrt{x - [x]}$ f. $f(x) = \{x\} + \frac{1}{2}\{x\}$