AÑO DEL BICENTENARIO DE LA DECLARACIÓN DE LA INDEPENDENCIA NACIONAL

Trabajo Práctico 1

Introducción a la Programación Científica

Introducción:

En este trabajo práctico se introduce al alumno al entorno de programación del software GNU Octave y se trabaja con los elementos básicos de programación (variables, estructuras, ciclos, condicionales, gráficos, entrada-salida de datos, etc). Los ejemplos a desarrollar provienen de las Cátedras de Cálculo y Probabilidad y Estadística.

Objetivos del trabajo práctico:

- 1. Familiarizarse con la utilización del software GNU Octave.
- 2. Incorporar conceptos de programación.
- 3. Incorporar buenas prácticas de elaboración de código.

Referencias:

- Eaton J., Bateman D., Hauberg S., Wehbring R., "GNU Octave Free your numbers", 4 Ed, Free Software Foundation, 2016. https://www.gnu.org/software/octave/octave.pdf
- Manual en línea de GNU Octave: https://www.gnu.org/software/octave/doc/interpreter/index.html#SEC_Contents
- Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al. (2014) "Best Practices for Scientific Computing". PLoS Biol 12(1): e1001745.
 doi:10.1371/journal.pbio.1001745. http://arxiv.org/pdf/1210.0530v4

Actividades:

Para cada ejercicio elabore un programa que resuelva las consignas indicadas.

Para elaborar el programa realice:

- 1. el diagrama del flujo de ejecución del programa
- 2. la estructura del algoritmo en formato de "pseudocódigo"
- 3. el código fuente o "script" del programa

Ejercicios de Cálculo

Los programas deben realizar las siguientes operaciones:

- 1. Realizar un bucle FOR de N pasos o WHILE con una condición de detención.
- 2. Calcular en cada ciclo el valor de la sucesión o suma parcial.
- 3. Para las series, determinar si la suma parcial crece en forma acotada o no y detener el bucle si diverge.
- 4. Almacenar los resultados en un vector.
- 5. Graficar el vector con el comando "plot".

Ejercicio 1. Determine la convergencia de las siguientes sucesiones:

$$a_n = \frac{n}{n+1}$$
 $a_n = \frac{1-2n}{n^2}$ $a_n = 3+5n$, $n \ge 1$ $a_n = \frac{sen(n)}{n}$ $a_n = \frac{n\cos(n)}{n^2+1}$

Ejercicio 2. indique si las siguientes series convergen o divergen. Si converge, calcule su suma.

$$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \quad \sum_{n=0}^{\infty} \frac{(-1)^n}{n} \quad \sum_{n=1}^{\infty} \frac{sen(n)}{n^2}$$

▶2016

AÑO DEL BICENTENARIO DE LA DECLARACIÓN DE LA INDEPENDENCIA NACIONAL

Ejercicios de estadística

Los programas deben realizar las siguientes operaciones:

- 1. Leer los datos de entrada a partir de un bucle WHILE, la función "input" y un condicional para determinar el fin del proceso de lectura.
- 2. Ordenar los datos de menor a mayor con la función "sort".
- 3. Contar la cantidad de eventos utilizando la función "unique", comparar los datos de entrada y almacenar en un nuevo vector las frecuencias absolutas.
- 4. Calcular las frecuencias acumuladas.
- 5. Calcular estadísticos. Para el rango usar funciones "min" y "max"
- 6. Graficar histograma con la función "bar" y el argumento "hist".
- 7. Graficar torta con la función "pie".

<u>Ejercicio 1.</u> En el siguiente conjunto de datos, se proporcionan los pesos en libras de 50 niños nacidos en un hospital universitario:

4, 8, 4, 6, 8, 6, 7, 7, 7, 8, 10, 9, 7, 6, 10, 8, 5, 9, 6, 3, 7, 6, 4, 7, 6, 9, 7, 4, 7, 6, 8, 8, 9, 11, 8, 7, 10, 8, 5, 7, 7, 6, 5, 10, 8, 9, 7, 5, 6, 5.

Calcular las frecuencias y las frecuencias acumuladas (absolutas y relativas). Realizar un histograma y un gráfico de torta con los datos. Calcular los siguientes estadísticos:

- a) La media, mediana y moda.
- b) El rango, la varianza, la desviación estándar y el coeficiente de variación.
- c) Los coeficientes de asimetría y de curtosis.
- d) La mediana, el primer cuartil y el tercer cuartil.

<u>Ejercicio 2.</u> Considerando que un niño recién nacido con peso igual o mayor a 2500 g tiene un peso "normal" mientras que uno con menos de 2500 g se considera de "bajo peso". Calcule las frecuencias absolutas y relativas para una variable binaria con "bajo peso" y "normal". (1 libra=453,6 g). Grafique un diagrama de barras con los datos del apartado.

<u>Ejercicio 3.</u> Los siguientes datos corresponden al recuento de cierto tipo de células en pacientes afectados de tuberculosis. El recuento de células se realizó "antes" y "después" de la aplicación de cierto tratamiento específico.

Paciente	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Antes	46	405	228	84	87	98	155	141	442	255	198	98	124	434	411	15	244	96	48	336	394	87	479
Después	127	123	87	129	235	323	96	413	379	370	420	142	124	138	21	15	244	358	44	662	394	266	423

Determine un conjunto de clases para los datos "Antes" y "Después" por separado. Calcule las frecuencias y las frecuencias acumuladas (tanto absolutas como relativas) de las clases para los datos "Antes" y "Después" por separado. Grafique histogramas. Grafique polígonos de frecuencias. Grafique polígonos de frecuencias acumuladas. Realice un diagrama de dispersión. Calcule la covarianza entre antes y después. Calcule el coeficiente de correlación lineal entre antes y después.