

TRABAJO PRÁCTICO 3: DERIVADAS

1. Encuentre la derivada de la función f respecto de x en cada uno de los casos que se presentan a continuación:

(a)
$$f(x) = 5x - 1$$

(d)
$$f(x) = x^2 + \frac{1}{x^2}$$
 (g) $f(x) = 4\pi^2$

(g)
$$f(x) = 4\pi^2$$

(b)
$$f(x) = x^2 + 3x - 4$$

(e)
$$f(x) = 3x + 2e^x$$

(b)
$$f(x) = x^2 + 3x - 4$$
 (e) $f(x) = 3x + 2e^x$ (h) $f(x) = x\sqrt{x} + \frac{1}{x^2\sqrt{x}}$

(c)
$$f(x) = x^{-2/5}$$

(f)
$$f(x) = (x-1)\sqrt{x}$$

- 2. Encuentre una ecuación de la recta tangente a la curva $y=x+\frac{4}{x}$ en el punto (2,4). Ilustre x graficando la curva y la tangente en el mismo par de ejes coordenados.
- 3. Encuentre los puntos sobre la curva $y = x^3 x^2 x + 1$ donde la tangente es horizontal.
- 4. Demuestre que la curva $y = 6x^3 + 5x 3$ no tiene recta tangente con pendiente 4. Realice la gráfica de esta curva y de su derivada en el mismo par de ejes coordenados.
- 5. La recta normal a una curva C, en un punto P, es, por definición, la recta que contiene al punto P y es perpendicular a la recta tangente a C en P. Encuentre una ecuación de la recta normal a la parábola $y = 1 - x^2$, en el punto (2, -3). Grafique la parábola y la recta normal.
- 6. Escriba una ecuación de la tangente a la curva $y = \frac{2x}{x+1}$ en el punto (1,1).
- 7. La curva $y = \frac{1}{1+x^2}$ se llama **bruja de María Agnesi**.
 - (a) Encuentre una ecuación para la recta tangente a esta curva en el punto $(-1, \frac{1}{2})$.
 - (b) Ilustre el inciso (a) trazando las gráficas de la curva y la recta tangente en el mismo par de ejes coordenados.
- 8. Derive la función f respecto de *x* o respecto de *t*, según corresponda.

(a)
$$f(x) = x^2 e^x$$

(c)
$$f(x) = \frac{x+2}{x-1}$$

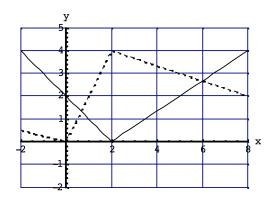
(c)
$$f(x) = \frac{x+2}{x-1}$$
 (e) $f(x) = \frac{\sqrt{x}-1}{\sqrt{x}+1}$

(b)
$$f(x) = \frac{e^x}{x^2}$$

(b)
$$f(x) = \frac{e^x}{x^2}$$
 (d) $f(t) = \frac{4t+5}{2-3t}$

- 9. Suponga que f(5) = 1, f'(5) = 6, g(5) = -3 y g'(5) = 2. Encuentre los valores de:
 - (a) (fg)'(5)

- (b) $(\frac{f}{q})'(5)$
- (c) $(\frac{g}{f})'(5)$
- 10. Si $f(x) = e^x g(x)$, donde g(0) = 2 y g'(0) = 5, halle f'(0).
- 11. Sean f y g las funciones cuyas gráficas se muestran a continuación, siendo f la gráfica representada con línea sólida y g la representada con línea de puntos. Sean u(x) = f(x)g(x) y $v(x) = \frac{f(x)}{q(x)}$. Encuentre u'(1) y v'(5).



- 12. Una partícula se mueve según la ley de movimiento $s=f(t)=t^2-10t+12$, $t\geq 0$, donde tse mide en segundos y s en metros.
 - (a) Encuentre la velocidad en el instante t.
 - (b) ¿Cuál es la velocidad después de 3s?
 - (c) ¿Cuándo está la partícula en reposo?
 - (d) ¿Cuándo se mueve hacia delante?
 - (e) Encuentre la distancia total recorrida durante los primeros 8s.
 - (f) Dibuje un diagrama para ilustrar el movimiento de la partícula.
- 13. La función de posición de una partícula está dada por $s(t)=t^3-\frac{9}{2}t^2-7t$, siendo $t\geq 0$. ¿Cuándo alcanza la partícula una velocidad de 5m/s?
- 14. Sea f una función dada por $f(x) = \begin{cases} 2-x & si \quad x \leq 1 \\ x^2 2x + 2 & si \quad x > 1 \end{cases}$.

¿Es f derivable en el valor 1? Haga las gráficas de f y f'.

15. Encuentre la derivada de la función f respecto de x o de t, según corresponda, en cada uno de los casos que se presentan a continuación:

(a)
$$f(x) = x - 3\sin x$$

(a)
$$f(x) = x - 3\sin x$$
 (c) $f(x) = \sin x + \cos x$ (e) $f(x) = \frac{x}{\sin x + \cos x}$

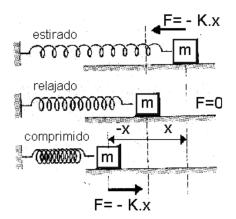
(e)
$$f(x) = \frac{x}{\sin x + \cos x}$$

(b)
$$f(x) = x \sin x$$

(d)
$$f(t) = t^3 \cos t$$

- 16. Pruebe que $\frac{d}{dx}(\sec x) = \sec x \tan x$.
- 17. Derive la identidad trigonométrica $\tan x = \frac{\sin x}{\cos x}$ para obtener una identidad nueva o conocida.
- 18. Encuentre la ecuación de la recta tangente a la curva $y = \tan x$ en el punto $(\frac{\pi}{4}, 1)$.
- 19. Una masa en un resorte vibra horizontalmente sobre una superficie lisa y nivelada. Su ecuación del movimiento es $x(t) = 8 \sin t$, donde t está en segundos y x en centímetros.

2



- (a) Encuentre la velocidad en el instante t.
- (b) Halle la posición y la velocidad de la masa en el instante $t=2\pi/3$. ¿En qué dirección se mueve en ese instante?
- 20. Derive aplicando la regla de la cadena:

(a)
$$h(x) = (x^2 + 4x + 6)^5$$

(e)
$$h(x) = \cos(a^3 + x^3)$$
 (i) $h(x) = \cos(x \sin x)$

(i)
$$h(x) = \cos(x \sin x)$$

(b)
$$h(x) = \cos(\tan x)$$

(f)
$$h(x) = \left(\frac{y-6}{y+7}\right)^3$$

(i)
$$h(x) = x^2 \cos(1/x)$$

(c)
$$h(x) = e^{\sqrt{x}}$$

(g)
$$h(x) = e^{x \cos x}$$

(d)
$$h(t) = \sqrt{x^2 - 7x}$$

(b)
$$h(x) = \cos(\tan x)$$
 (f) $h(x) = \left(\frac{y-6}{y+7}\right)^3$ (j) $h(x) = x^2 \cos(1/x)$ (e) $h(x) = e^{\sqrt{x}}$ (g) $h(x) = e^{x \cos x}$ (k) $h(x) = \frac{1}{x+\sqrt{x^2+1}}$ (d) $h(t) = \sqrt{x^2 - 7x}$ (h) $h(x) = \frac{1+\sqrt{\sin(3x)}}{1-x+x^5}$

(k)
$$h(x) = \frac{1}{x + \sqrt{x^2 + 1}}$$

- 21. Halle todos los puntos de la gráfica de la función f dada por $f(x) = 2\sin x + \sin^2 x$ la recta tangente es horizontal.
- 22. Suponga F(x) = f(g(x)) y g(3) = 6, g'(3) = 4, f'(3) = 2 y f'(6) = 7. Halle F'(3).
- 23. Use la regla de la cadena para demostrar lo siguiente:
 - (a) La derivada de una función par es una función impar.
 - (b) La derivada de una función impar es una función par.
- 24. Decidir en qué puntos son derivables las siguiente funciones:

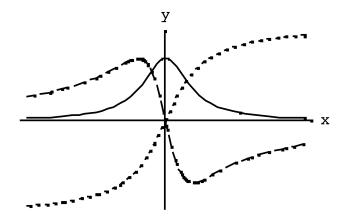
$$f(x) = \begin{cases} 0 & si & x \le -1 \\ x^2 & si & |x| < 1 \\ 2x + 1 & si & 1 \le x \le 2 \\ 7 - x & si & x > 2 \end{cases}$$

$$g(x) = \begin{cases} 1 + 4x & si \quad x \le 2\\ x^2 - 1 & si \quad 2 < x < 5\\ 5x - 1 & si \quad 5 \le x \end{cases}$$

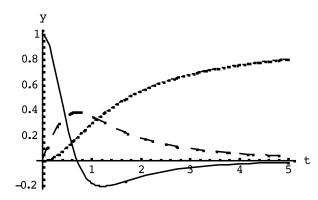
$$h(x) = \begin{cases} 1 & si & x \le -1 \\ x+2 & si & -1 < x \le 2 \\ \frac{1}{4}x^2 + 3 & si & x > 2 \end{cases}$$

- 25. Dada la ecuación $xy + 2x + 3x^2 = 4$:
 - (a) Encuentre y' por derivación implícita.
 - (b) Resuelva la ecuación en forma explícita para y, y luego derive para obtener y' en términos de x.
 - (c) Compruebe que sus soluciones para los incisos (a) y (b) son consistentes, sustituyendo la expresión para y en su solución del inciso (a).
- 26. Encuentre $\frac{dy}{dx}$ por derivación implícita siendo y=f(x).
 - (a) $x^2 + y^2 = 1$
- (b) $x^2y + xy^2 = 3x$
- (c) $4\cos x \sin x = 1$
- 27. Halle la ecuación de la recta tangente a la curva $\frac{x^2}{16} \frac{y^2}{9} = 1$ en el punto $(-5, \frac{9}{4})$.
- 28. Halle la derivada de la función f en cada caso. Simplifique donde se pueda.
 - (a) $f(x) = \sin^{-1} x^2$

- (b) $f(x) = \tan^{-1} e^x$
- 29. Demuestre que las curvas $2x^2 + y^2 = 3$; $x = y^2$ son ortogonales.
- 30. La figura que se presenta a continuación muestra las gráficas de f, f', y f''. Identifique cada curva y explique sus elecciones.



31. La figura que sigue presenta las gráficas de tres funciones. Una es la función de posición de un automóvil; otra, la velocidad del mismo, y otra, su aceleración. Identifique cada curva y explique su elección.



32. Determine la primera y segunda derivada de la función f en cada uno de los casos que se presentan a continuación:

(a)
$$f(x) = x^5 + 6x^2 - 7x$$
 (b) $f(\theta) = \cos(2\theta)$

(b)
$$f(\theta) = \cos(2\theta)$$

(c)
$$f(x) = \frac{x}{1-x}$$

- 33. Determine la derivada tercera de $y = \sqrt{2x+3}$.
- 34. Si $f(x) = (2-3x)^{-1/2}$, determine f(0), f'(0), f''(0) y f'''(0).
- 35. Calcule la derivada segunda de $x^3 + y^3 = 1$ mediante derivación implícita.
- 36. Encuentre una fórmula para $f^{(n)}(x)$ en cada caso:

(a)
$$f(x) = e^{2x}$$

(b)
$$f(x) = \frac{1}{3x^3}$$

- 37. Una partícula se mueve de acuerdo con una ley de movimiento $s = f(t) = t^3 12t^2 + 36t$, $t \ge 0$, donde t es la medida en segundos y s en metros.
 - (a) Encuentre la aceleración en el tiempo t y después de 3s.
 - (b) Grafique las funciones de posición, velocidad y aceleración para $0 \le t \le 8$.
 - (c) ¿Cuándo aumenta la partícula su velocidad? ¿Cuándo la reduce?
- 38. Una ecuación $y'' + y' 2y = \sin x$ se llama **ecuación diferencial** porque involucra una función desconocida, en este caso y, y sus derivadas y' e y''. Encuentre las constantes A y B con las cuales la función $y = A \sin x + B \cos x$ satisfaga esta ecuación.
- 39. ¿Para qué valores de r satisface la función de ecuación $y = e^{rx}$ a la ecuación y'' + 5y' 6y = 0?
- 40. Derive la función f respecto de x o θ , según corresponda, en cada caso:

(a)
$$f(x) = \ln(2 - x)$$

(c)
$$f(x) = \cos(\ln x)$$

(b)
$$f(\theta) = \ln(\cos \theta)$$

(d)
$$f(x) = e^x \ln x$$

- 41. Encuentre y' e y'' de $y = x \ln x$.
- 42. Aplique derivada logarítmica para hallar la derivada de *y* en cada caso:

(a)
$$y = x^x$$
, siendo $x > 0$

(b)
$$y = x^{\sin x}$$
, siendo $x > 0$

(a)
$$y = x^x$$
, siendo $x > 0$ (b) $y = x^{\sin x}$, siendo $x > 0$ (c) $y = (\ln x)^{\cos x}$, siendo $x \ge 1$

43. Use la definición de derivada para probar que $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$.