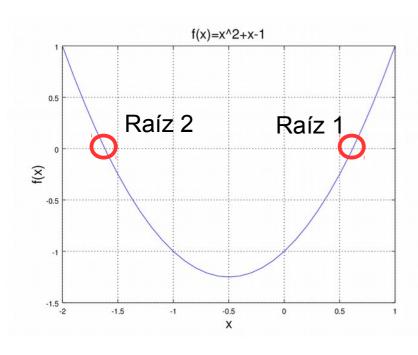
Unidad 2: Solución de ecuaciones

Temario:

- Raíces de funciones
- Método de la Bisección
- Método de Regula Falsi
- Método de Newton-Raphson
- Método de la Secante
- Múltiples raíces

Raíces (soluciones) de funciones

$$x = \frac{-1 \pm \sqrt{1^2 - 4(-1)}}{2} \Rightarrow \begin{cases} x_1 = -\frac{1}{2} + \sqrt{\frac{5}{4}} = 0,61803398874989484820458683436564 \\ x_2 = -\frac{1}{2} - \sqrt{\frac{5}{4}} = -1,6180339887498948482045868343656 \end{cases}$$



 x_1 y x_2 son las "raíces" o "ceros" de la ecuación cuadrática. Es decir son los **valores de x que cumplen la ecuación**.

Para encontrar los ceros se puede:

- Hacer "prueba y error" evaluando la función un número de veces que dependerá de la suerte y la experiencia.
- Usar métodos numéricos basados en algoritmos lógicos.

Métodos numéricos

Hay dos clases de métodos numéricos, los cerrados y los abiertos.

En los **métodos** cerrados se necesita **conocer un entorno** que contiene la raíz. Se comienza con un **intervalo cerrado de partida [a,b]** en el que **f(a)** y **f(b)** tengan distinto **signo** y por el **teorema de Bolzano** queda asegurado que existe una solución. El algoritmo consiste en **ir reduciendo iterativamente el ancho del intervalo** hasta que se obtenga un **error aceptable**. Los métodos cerrados que veremos son el método de la **bisección** y el de **regula falsi**.

En los **métodos abiertos** se comienza por **un punto de partida** y se predice una mejor aproximación de la solución utilizando el valor de la derivada de la función. Los métodos abiertos que veremos son el método de **Newton-Raphson** y el de la **secante**.

Algoritmo de la bisección

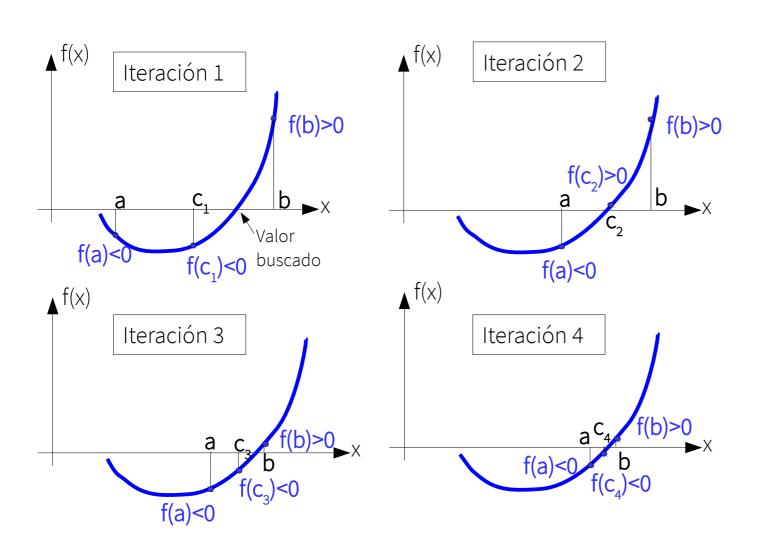
Para la bisección, el **proceso** consiste en **tomar el punto medio** del intervalo, es decir, c=(a+b)/2 y luego se analizan las siguientes **posibilidades**:

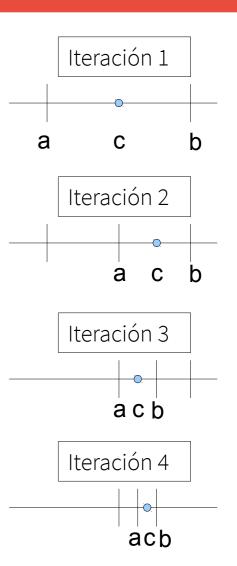
- 1) f(a) y f(c) tienen signos opuestos, entonces el cero se ubica dentro de [a,c]
- 2) f(c) y f(b) tienen signos opuestos, entonces el cero se ubica dentro de [c,b]

Al elegir el nuevo intervalo se redujo el intervalo original por la mitad, y se redujo el error a la mitad.

Para continuar el proceso, se renombra el intervalo [a,c] o [c,b] como [a,b] y se repite la subdivisión.

Algoritmo de la bisección





Algoritmo de la bisección



Ejemplo: $f(x)=x^2+x-1=0$ con una tolerancia de 0,001

$$c = \frac{(a+b)}{2}$$
 $error = |f(c)|$

iteración	a	b	f(a)	f(b)	С	f(c)	
1	0	1	-1	1	0,5	-0,25	
				4			
			Siempre cambio d entre f(a)	e signo ir			
Si f(a)<0, f(b)	>0, f(c)<0), ¿dónde	e está la r	aíz? ¿En	[a,c] o [c	,b]?

Ejemplo: $f(x)=x^2+x-1=0$ con una tolerancia de 0,001

$$c = \frac{(a+b)}{2}$$
 $error = |f(c)|$

iteración	a	b	f(a)	f(b)	С	f(c)
1	0	1	-1	1	0,5	-0,25
2	0,5	1	-0,25	1	0,75	0,3125

Como f(a)*f(c)>0, la raíz está en [c,b]. Hay que actualizar el valor de a por el de c.

¿Y ahora? ¿dónde está la raíz? ¿En [a,c] o [c,b]?

Ejemplo: $f(x)=x^2+x-1=0$ con una tolerancia de 0,001

$$c = \frac{(a+b)}{2} \quad error = |f(c)|$$

iteración	a	b	f(a)	f(b)	С	f(c)
1	0	1	-1	1	0,5	-0,25
2	0,5	1	-0,25	1	0,75	0,3125
3	0,5	0,75	-0,25	0,3125	0,625	0,0156
4	0,5	0,625	-0,25	0,0156	0,5625	-0,1211
5	0,5625	0,625	-0,1211	0,0156	0,5938	-0,05371
6	0,5938	0,625	-0,0537	0,0156	0,6094	-0,0193
7	0,6094	0,625	-0,0193	0,0156	0,6172	-0,0019
8	0,6172	0,625	-0,0019	0,0156	0,6211	0,0069
9	0,6172	0,6211	-0,0019	0,0069	0,6192	0,0026
10	0,6172	0,6192	-0,0019	0,0026	0,6182	0,0004

Solución analítica $x_1 = -0.5 + \sqrt{1,25} = 0.61803$

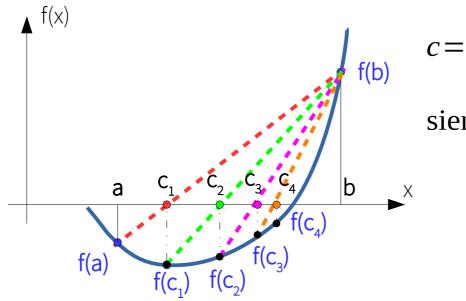
⊢Se alcanzó la tolerancia en 10 iteraciones.

Algoritmo de Regula Falsi

Consiste en una mejora de la velocidad de convergencia del proceso de bisección.

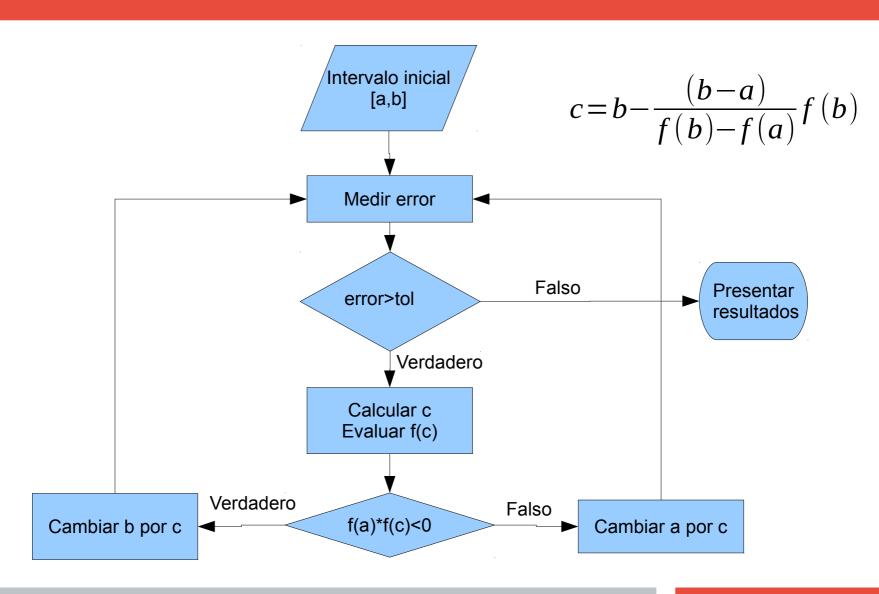
En vez de dividir el intervalo a la mitad, se introduce otro criterio de selección de la nueva aproximación. Se hace **pasar una recta entre a y b** y se determina el **punto de la recta cuya imagen es cero**. Dicho punto será la nueva aproximación de la raíz.

El nombre "Regula Falsi" proviene del latín y significa "posición falsa" debido a que c corresponde a la raíz de la recta, en vez de la función f(x).



f(b)
$$c = b - \frac{1}{m} f(b)$$
 siendo
$$m = \frac{f(b) - f(a)}{b - a}$$

Algoritmo de Regula Falsi



Ejemplo: $f(x)=x^2+x-1=0$ con una tolerancia de 0,001

$$c=b-\frac{(b-a)}{f(b)-f(a)}f(b)$$
 error= $|f(c)|$

iteración	a	b	f(a)	f(b)	С	f(c)	
1	0	1	-1	1	0,5	-0,25	
2	0,5	1	-0,25	1	0,6	-0,04	
3	0,6	1	-0,04	1	0,6154	-0,0059	
4	0,6154	1	-0,0059	1	0,6176	-0,0009	←
							•

Se alcanzó la tolerancia en 4 iteraciones.

Solución analítica
$$x_1 = -0.5 + \sqrt{1,25} = 0.61803$$

Algoritmo de Newton-Raphson

Derivación de la función de iteración de Newton-Raphson

La linealización de la función f(x) alrededor de un punto x_i es:

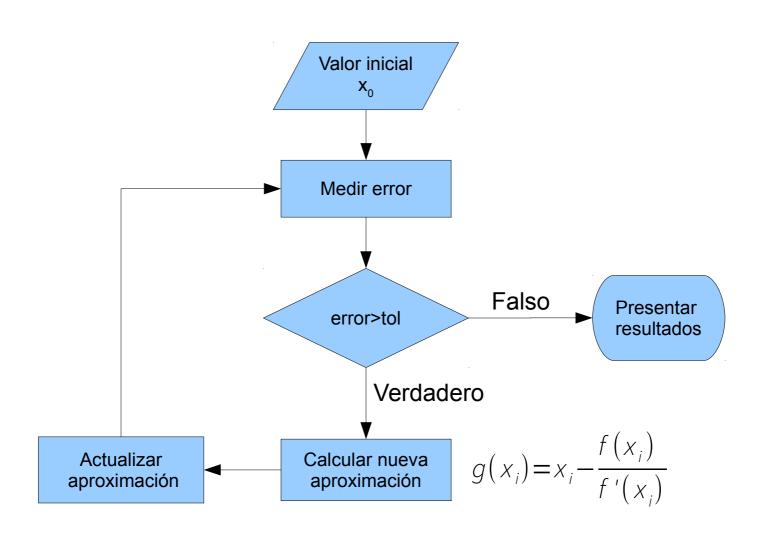
$$L(x) = f(x_i) + f'(x_i)(x - x_i)$$

Si consideramos que la imagen de la linealización es cero para un cierto punto x tenemos que:

$$\mathbf{0} = f(x_i) + f'(x_i)(x_{NR} - x_i) \Rightarrow \text{podemos despejar } x_{NR}(x_i) = x_i - \frac{f(x_i)}{f'(x_i)}$$

La función
$$g(x_i) = x_i - \frac{f(x_i)}{f'(x_i)}$$
 se llama **función de iteración de Newton-Raphson**

Método de Newton-Raphson



Método de Newton-Raphson

Ejemplo: $f(x)=x^2+x-1=0$ con una tolerancia de 0,001

iteración	X _i	f(x _i)	f'(x _i)	X _{i+1}
1	0	-1	1	1
2	1	1	3	0,6667
3	0,6667	0,1111	2,333	0,6190
4	0,6190	0,0023	2,2381	0,61803
5	0,61803	1,0265E-06	2,2361	

Se alcanzó la tolerancia en 4 iteraciones. Pero el error es mucho menor!!!

Método de Newton-Raphson

Ejemplo: $f(x)=e^{-x}=0$ con una tolerancia de 0,001

iteración	X _i	f	f'	X _{i+1}
1	1	0,3679	-0,3679	2
2	2	0,1353	-0,1353	3
3	3	0,0498	-0,0498	4
4	4	0,0183	-0,0183	5
5	5	0,0067	-0,0067	6
100	1,00E+02	3,72E-44	-3,72E-44	101
500	5,00E+02	7,12E-218	-7,12E-218	501
745	7,45E+02	1E-323	-1E-323	746
746	746	0	0	#DIV/0!

Explota por aritmética de punto flotante.

Además la convergencia es lenta debido a que f y f' son muy parecidas

Método de Newton-Raphson

Ejemplo: f(x)=atan(x)=0 con una tolerancia de 0,001

iteración	x _i	f	f'	X _{i+1}
1	1,4500	0,9670	0,3223	-1,5503
2	-1,5503	-0,9979	0,2938	1,8459
3	1,8459	1,0743	0,2269	-2,8891
4	-2,8891	-1,2376	0,1070	8,6784
5	8,6784	1,4561	0,0131	-102,4426
6	-102,4426	-1,5610	0,0001	16281,3694
7	16281,3694	1,5707	0,0000	-416358823,9128
8	-416358823,9128	-1,5708	0,0000	272304878428811000,0000

Oscila alrededor de la solución y luego explota

Método de Newton-Raphson

Ejemplo: f(x)=atan(x)=0 con una tolerancia de 0,001

iteración	X _i	f	f'	X _{i+1}
1	0,5000	0,4636	0,8000	-0,0796
2	-0,0796	-0,0794	0,9937	0,0003
3	0,0003	0,0003	1,0000	0,0000
4	0,0000	0,0000	1,0000	0,0000

Si el punto inicial es próximo a la raíz, converge

Conclusión, el método de Newton-Raphson es más rápido pero es más inestable, dependiendo del valor inicial que se utilice y de las propiedades de la función.

Método de la secante

Un inconveniente adicional del método de Newton-Raphson es la evaluación de la derivada. A veces la función es muy compleja para su evaluación. Una solución es aproximar la derivada de la función con una "diferencia finita hacia atrás".

$$f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{(x_i - x_{i-1})}$$

La fórmula de iteración resultante es:

$$x_{i+1} = x_i - \frac{f(x_i)}{m}$$
, siendo $m = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$

Para iniciar el método se requiere proponer dos puntos x₀ y x₁.

Método de la secante

Ejemplo: $f(x)=x^2+x-1=0$ con una tolerancia de 0,001

iteración	X _i	f	X _{i+1}
	0,0000	-1,0000	
1	1,0000	1,0000	0,5000
2	0,5000	-0,2500	0,6000
3	0,6000	-0,0400	0,6190
4	0,6190	0,0023	0,6180
5	0,6180	0,0000	0,6180