
UNIDAD 9: MOVIMIENTO PERIODICO

- **1.** En un laboratorio de física, se conecta un deslizador de riel de aire de *0.2kg* al extremo de un resorte ideal de masa despreciable y se pone a oscilar. El tiempo entre la primera vez que el deslizador pasa por la posición de equilibrio y la segunda vez que pasa por ese punto es de *2.6s*. Determine la constante de fuerza del resorte.
- **2.** Un oscilador armónico tiene una masa de 0.5kg y un resorte ideal con k = 140N/m. Calcule: a) el período; b) la frecuencia; c) la frecuencia angular.
- **3.** Un bloque de 2kg, que se desliza sin fricción, se conecta a un resorte ideal con k=300N/m. En t=0, el resorte no está estirado ni comprimido y el bloque se mueve en la dirección negativa a 12m/s. Calcule: a) la amplitud; b) el ángulo de fase. c) Escriba una ecuación para la posición en función del tiempo.
- **4.** El desplazamiento en función del tiempo de una masa de 1.5kg en un resorte está dado por la ecuación $x(t) = (7.4cm)\cos[4.16s^{-1})t 2.42]$. Calcule: a) el tiempo que tarda una vibración completa; b) la constante de fuerza del resorte; c) la rapidez máxima de la masa; d) la fuerza máxima que actúa sobre la masa; e) la posición, rapidez y aceleración de la masa en t=1s, y la fuerza que actúa sobre la masa en ese momento.
- 5. Un oscilador armónico tiene frecuencia angular \S y amplitud A. a) Calcule la magnitud del desplazamiento y de la velocidad cuando la energía potencial elástica es igual a la energía cinética. Suponga que U=0 en el equilibrio. b) ¿Cuántas veces sucede eso en cada ciclo? ¿Cada cuánto sucede? c) En un instante en que el desplazamiento es igual a A/2, ¿qué fracción de la energía total del sistema es cinética y qué fracción es potencial?
- **6.** Un objeto se mueve en MAS. Cuando está desplazado *0.6m* a la derecha de su posición de equilibrio, tiene una velocidad de *2.2m/s* a la derecha y una aceleración de *8.4m/s*² a la izquierda. ¿A qué distancia de este punto se desplazará el objeto antes de detenerse momentáneamente para iniciar su movimiento a la izquierda?
- **7.** Imagine que quiere determinar el momento de inercia de una pieza mecánica complicada, respecto a un eje que pasa por su centro de masa, así que la cuelga de un alambre a lo largo de ese eje. El alambre tiene una constante de torsión de *0.45N m/rad*. Usted gira un poco la pieza alrededor del eje y la suelta, cronometrando *125 oscilaciones* en *265s*. ¿Cuánto vale el momento de inercia buscado?
- **8.** Se tira de un péndulo simple de *0.24 m* de longitud para moverlo *3.5°* a un lado y se suelta. a) ¿Cuánto tarda la pesa del péndulo en alcanzar su rapidez máxima? b) Cuánto tarda si el ángulo es de *1.75°* en vez de *3.5°*?
- **9.** Después de posarse en un planeta desconocido, un explorador espacial construye un péndulo simple con longitud de 50cm y determina que efectúa 100 oscilaciones completas en 136s. ¿cuánto vale g en ese planeta?
- **10.** Queremos colgar un aro delgado de un clavo horizontal y hacer que tenga una oscilación completa con ángulo pequeño una vez cada *2s*. ¿Qué radio debe tener el aro?

- **11.** Una llave inglesa de *1.8kg* está pivotada a *0.25m* de su centro de masa y puede oscilar como péndulo físico. El periodo para oscilaciones de ángulo pequeño es de *0.94s*. a) ¿Qué momento de inercia tiene la llave respecto a un eje que pasa por el pivote? b) Si la llave inicialmente se desplaza *0.4rad* de la posición de equilibrio, ¿qué rapidez angular tiene al pasar por dicha posición?
- **12.** Un huevo duro (cocido) de 50g se mueve en el extremo de un resorte con k=25N/m. Su desplazamiento inicial es de 0.3m. Una fuerza amortiguadora $F_x = -bv_x$ actúa sobre el huevo, y la amplitud del movimiento disminuye a 0.1 m en 5 s. Calcule la constante de amortiguación b.
- **13.** Un paquete experimental y su estructura de soporte que se colocarán a bordo de la Estación Espacial Internacional actúan como sistema de resorte-masa subamortiguado con constante de fuerza de 2.1x106N/m y masa de 108kg. Un requisito de la NASA es que no haya resonancia para oscilaciones forzadas en ninguna frecuencia menor que 35Hz. ¿Satisface el paquete tal requisito?

Problemas

14. Un bloque de masa M descansa en una superficie sin fricción y está conectado a un resorte horizontal con constate de fuerza k. El otro extremo del resorte está fijo a una pared (ver figura). Un segundo bloque de masa m está sobre el primero. El coeficiente

de fricción estática entre los bloques es μ_e . Determine la amplitud de la oscilación máxima que no permite que el bloque superior resbale.

- **15.** Un bloque de masa m_1 , unido a un resorte horizontal con constante de fuerza k, se mueve en MAS con amplitud A_1 y periodo T_1 . a) En el instante en que el bloque pasa por su posición de equilibrio, se divide repentinamente en dos piezas idénticas. Una permanece unida al resorte y la otra es empujada rápidamente a un lado. En términos de A_1 y T_1 , ¿qué amplitud y periodo tiene el MAS después de partirse el bloque? b) Repita la parte (a) para la situación en la que el bloque se divide cuando está en $x = A_1$.
- **16.** En el planeta Newtonia, un péndulo simple tiene masa de *1.25 kg* y longitud de *185 cm* cuando se suelta del reposo, tarda *1.42 s* en describir un ángulo de *12.5º* hasta un punto en el que otra vez tiene rapidez cero. Se determinó que la circunferencia de Newtonia es de *51400 km*. Calcule la masa del planeta.