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Abstract
We consider the known problem of a particle in a one-dimensional box, i.e. in
an infinite potential well. Specifically, we evaluate the probability density for
finding a particle in a certain position when the system is in contact with a
reservoir at a temperature T≠0. We observe that, when the T is increased, the
density tends to become uniform in the box, except in a ‘boundary layer’ close
to the walls. Then, we consider two particles in the box, discriminating
between bosons and fermions. The particles are first analyzed without
accounting for the spin. Evaluating the thermalized probability density in this
way, results in a clear difference between bosons and spinless fermions. Next,
we consider the complete wave function for spin-½fermions, and the prob-
ability density changes significantly with respect to the spinless case. This
shows that disregarding the electron spin for the sake of simplicity may lead to
misleading results.
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1. Introduction

The quantum particle in a box is an inescapable exercise for students taking a course on
modern physics [1] or quantum mechanics [2, 3]. And there is good reason for this, since the
problem allows applying quantum concepts to a system that admits of a simple mathematical
treatment. Therefore, there is abundant bibliography [4–18] on the topic, where the original
problem is modified and analyzed from different perspectives. Honoring that tradition, and in
general terms, the question we want to answer in this article is: where are the particles when
the box is at temperature T? To be more precise, in this work we will study the behavior of the
probability density for finding a particle at a given position when the infinite potential well is
in contact with a thermal reservoir.
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We will first study the case of a particle in an infinite potential well, recall some well-
known results, and evaluate the probability density for finding that particle in a given posi-
tion. Next, the system will be put in contact with a reservoir at temperature T and we will
observe how that probability density changes. The following step will be to consider two
quantum particles in the well, and it will be necessary to distinguish between fermions and
bosons. Since this article is meant to be educational, we will first analyze the system omitting
the spin, i.e. focusing on the spatial aspect of the wave function. And we will repeat the same
steps, as in the case of a single particle: evaluating the probability density for finding the
particles in certain spatial positions, and then observing what happens when the system is at a
temperature different to zero. Finally, we will analyze the problem of two fermions including
their spin, and we will show that it introduces an interesting change to the results obtained
previously.

2. Particle in a box

Any course on quantum mechanics explains that the probability for finding a particle at a
position X and at a time t is proportional to the square of the wave function Ψ at that point.
If P(X, t) represents the probability density, quantum mechanics states that

( ) ∣ ( )∣= YP X t X t, , .2 Considering a particle of mass m in an infinite potential well of
width L, Schrödinger’s equation has an exact solution and it turns out to be

( ) ( ) ( )/j pY = -X t x i E t h, exp 2 ,n n n where subscript n indicates the current auto-state of the
system. This auto-state is characterized by an energy En and a spatial wave function jn(x)
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Then, as the quantum mechanics textbooks explain [2, 3], to evaluate the probability density
we have to calculate: P(X, t)=Ψ*(X, t) Ψ(X, t). In the case at hand, as the system is in an
auto-state, the time dependence is canceled and we get
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To this point, these are known results. But now, we wonder what happens when this
system is in contact with a thermal reservoir at temperature T. This condition corresponds to
the canonical ensemble of statistical mechanics [19, 20]. Therefore, to obtain the thermal
average of the probability density, we need to multiply the value of that quantity when the
system is in a state n, by the Boltzmann’s factor corresponding to the energy of that state
exp(−En/kB T), then add on all the states and normalize. As usual, kB denotes Boltzmann’s
constant. The thermalized probability density will be designated by Pth.

In mathematical terms, the corresponding formula is
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To simplify the notation, we will introduce an adimensional spatial coordinate x and an
adimensional temperature t given by
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Note that now the spatial variable is limited to the interval (0, π). The change in the amplitude
of the wave function in (5c) is necessary so that the probability density integrated in this
interval continues to be 1.

With these new variables, (4b) can be rewritten as
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Let us observe the influence of temperature on the probability density. First, though, we need
to decide what to do with the infinite terms that appear in the summations of (6). For this,
expression (6) is evaluated numerically, taking a number nmax of terms in the summation. It
turns out that for t�10 the value of Pth is stabilized with nmax ≈25 and does not change
when this number is increased. Thus, that is the number of terms that can be taken in the
summations. Naturally, at higher temperatures, it would be necessary to consider more terms
in the summations; for example, for t=100 it is necessary to take nmax=50.

Figure 1(a) shows the probability density in relation to the position of the particle for
three temperatures. For low temperature (t=1), the particle tends to be in the central part of
the box, while at a higher temperature the probability density tends to become uniform
(t=10). It is interesting to note the occurrence of a ‘boundary layer’ type phenomenon; there
is an area very close to the walls of the box where the particle is extremely unlikely to be
found. This is clearly evident for the high temperature (t=100) represented by the solid line
in the graph. A width d of the boundary layer can be defined by Pth(d, t)=0.1. Of course,
one could choose another value of the probability density, but 0.1 seems to be a reasonable
one. Figure 1(b) shows d as a function of t. It is clear that for high temperatures there is a sort
of boundary layer for the probability distribution.

It can be instructive to estimate, for a particular system, the real values of those tem-
peratures. As known [11], it is possible to build semiconducting nanostructures that, under
certain circumstances, can be modeled as an infinite potential well. Let us suppose that we
have an electron confined in one such nanostructure with L=10 nm. From (5a), we see that
the unit to measure the temperature is 43 K and, therefore, the lines shown in figure 1 cor-
respond to 43, 430 and 4300 K. It should be highlighted that the temperature unit depends
heavily on the size of the system. If the nanostructure has a width of 2 nm, then the unit is
valued as 1080 K and the only line that makes some sense is the one corresponding to t=1.
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On the other hand, if L=15 nm, then the temperature unit is 19 K, and the curves shown
correspond to 19, 190 and 1900 K.

3. Two spinless particles

Now, we propose the same problem of the previous section, but with two particles in the box.
Since in quantum mechanics it is necessary to distinguish between fermions and bosons, we
will identify the wave functions and physical quantities of fermions with superscript ‘f’ and
those of bosons with superscript ‘b’. For teaching purposes, in this section we will omit the
spin in order to concentrate on the spatial aspect of the wave function. In section 4, the
complete wave function will be considered.

Figure 1. (a) Graph shows the thermalized probability density Pth for finding the
particle in a position x for different temperatures: (I) t = 1 –dotted line, (II) t=10 –

dashed line, (III) t=100 –solid line. Note the ‘boundary layer’ effect; in the area near
the walls of the box, the probability density plummets to zero. This is especially clear
for the case of the highest temperature –solid line. (b) Width d of the ‘boundary layer’
as a function of the temperature t. Width d is defined by Pth(d, t)=0.1.
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For fermions, it is known that the total wave function must be antisymmetric under
particle interchange, which implies that the two particles cannot occupy the same energy level
(n1≠n2) if there is no spin. Consequently, the wave function ψ f will be as follows:

( ) ( ( ) ( ) ( ) ( )) ( )y j j j j= -x x x x x x a,
1

2
, 7f

n n n n n n1, 2 1 2 1 1 2 2 1 2 2 1
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For bosons, the wave function must be symmetrical in relation to particle interchange,
and there is no restriction regarding their occupying the same energy level, so that

( ) ( ( ) ( ) ( ) ( )) ( )y j j j j= +x x x x x x b,
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After replacing in (7) the wave function of the particles as expressed in (5c), the prob-
ability density for finding one particle in x1 and the other in x2 will be given by
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Note that the wave functions are expressed in terms of the adimensional variable x defined
in (5b).

At this point, it can be instructive to plot these probabilities for different n1 and n2 values.
This is done in figure 2 for bosons and in figure 3 for fermions.

The plots for bosons can be seen in figure 2. Figure 2(a) corresponds to the case where
both particles are in the ground state (n1=n2=1) and we can see that the probability for
finding a particle is at its maximum in the middle of the box when both bosons occupy the
same spatial position. Figure 2(b) shows the probability when a particle is in the ground state
and the other in an excited state (n1=1, n2=5). Again, we observe that the maxima appear
along the diagonal, i.e. when x1=x2.

Figure 3 shows the plots for two fermions. Figure 3(a) represents the ground state of the
system, when one fermion is in the ground state and the other in the first excited state (n1=1,
n2=2). Figure 3(b) plots the case where n1=1 and n2=5. As one of the quantum numbers
increases, the plot becomes more complicated but visually attractive. We will see that the
temperature erases all that complexity. It should be highlighted that the probability for finding
the fermions in the same spatial position, i.e. along the diagonal of the plot, is strictly zero.

To calculate the effect of temperature we will need to multiply the probability obtained
for each pair (n1, n2) by Boltzmann’s factor and then normalize. Naively, this could be written
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However, we must be careful when evaluating the thermalized probability Pth. On the one
hand, the numeric calculation requires that we replace the upper limit of the summations with
a parameter nmax to be determined. On the other hand, it is necessary to avoid adding the
same term twice. Finally, we need to remember that two fermions cannot occupy the same
level. With these considerations in mind, expression (9a) assumes the following form for
fermions or bosons:
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Figure 2. Plots of the probability P (vertical axis) for finding one particle in x1 and the
other in x2 (horizontal axes). Since we are dealing with bosons, there is no restriction
regarding the energy level that each occupies. Figure 2(a): both particles are in the
ground state (n1=n2=1). Figure 2(b): One particle is in the ground state (n1=1),
while the other is in an excited state (n2=5). Note that the relative maxima occur
along the diagonal, which means that the probability reaches its maximum in situations
where x1=x2.
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Note that the limits of the summations are different for fermions and bosons. For fermions,
the limits are 1 � n1 � nmax—1 and n1 + 1 � n2 � nmax. For bosons, as there is no
impediment for them to occupy the same energy level, the limits are 1�n1�nmax and
n1�n2�nmax. Now, all we need to do is replace expressions (8) in (9) to calculate the
probability density for finding one particle in x1 and the other in x2 when the entire system is
in contact with a reservoir at temperature t. The parameter nmax is determined by trial and
error; it needs to be increased until the probability values obtained for a given temperature
become stable. As for the energy, it is considered that there is no interaction between the
particles, therefore

( )= +E n n . 10n n1, 2 1
2

2
2

Figure 4 shows the thermalized probability density at t=10 for bosons (figure 4(a)) and
for fermions (figure 4(b)). The value used is nmax=25.

Figure 3. Plots of the probability density P (vertical axis) for finding one fermion in
position x1 and the other in position x2 (horizontal axes). Remember that due to the
change of variables we introduced, the positions vary in the interval (0, π). (a): One
fermion is in the ground state (n=1), while the other is in the first excited state with
n=2. Note that the probability is strictly zero along the diagonal x1=x2. (b): For the
case where one fermion is in the ground state (n=1) and the other in a higher excited
state (n=5), again the probability is strictly zero along the diagonal.
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Figure 4. Plots of the thermalized probability density Pth (vertical axis) for finding one
particle in x1 and the other in x2 (horizontal axes) when the system is in contact with a
reservoir at t=10: (a) bosons, (b) spinless fermions and (c) fermions with spin ½. In
the first case, the probability for two bosons to have the same spatial coordinate is at its
maximum, while for spinless fermions, that probability is null. These results are
obtained using only the spatial part of the wave function. However, in (c) the complete
wave function of fermions is used, including the spin, which changes the result
significantly, as will be explained in section 4.
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4. Fermions with spin

So far, the most significant contribution was to show how the probability density differs when
distinguishing bosons from fermions. To do this, however, the spin was deliberately omitted
to concentrate on the spatial aspect of the wave function. Now, we will move on to carry out
the complete analysis, i.e. assuming that fermions have spin ½. We focus on fermions because
the introduction of the spin implies qualitative changes in their behavior. The total wave
function of fermions must be antisymmetric and have two components, one referred to the
spatial variables and the other to the spins. If we use χ+(1) to indicate that the first is a spin-up
particle, while the second is a spin-down particle denoted by χ−(2), then we have the
following possible cases when one particle is in level n1 and the other in level n2:

(a) Symmetric spatial wave function:

[ ( ) ( ) ( ) ( )] [ ( ) ( ) ( ) ( )] ( )j j j j c c c cY = + -+ - + -x x x x a
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It is important to emphasize the qualitative difference between both cases. If the
spatial wave function is symmetric, then the part of the wave function associated with the spin
must be antisymmetric, and there is only one way of doing that. This state is said to be a spin
singlet. But if the spatial wave function is antisymmetric, then there are three different ways to
express the part owing to the spin, and the three are symmetric under particle interchange. The
antisymmetric spatial wave function is said to be associated with a spin triplet. Now, how do
we calculate the probability for finding one particle in x1 and the other in x2, independently of
their spin? It will be necessary to keep in mind the four possible wave functions and to
remember that three of them are associated with the antisymmetric spatial wave function and
one with the symmetric spatial wave function. Then,
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It should be highlighted that when the spin was not taken into account, the case of
n1=n2 was forbidden by the Pauli exclusion principle. Now that the spin is being con-
sidered, it is possible for both fermions to have the same quantum number n but opposing
spins. Figure 5 shows: (a) the case for n1=1 and n2=2 and (b) the case for n1=1 and
n2=5. Figure 5 should be compared with figure 3.
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Finally, all that remains is to evaluate the effect of temperature, when we put the potential
well in contact with a thermal reservoir at temperature t. For this, we should take the prob-
ability density Pn1,n2 given by (12), multiply it by the corresponding Boltzmann’s factor and
normalize. This gives
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Now, refer to figure 4(c), which shows the Pth for fermions with spin at temperature
t=10. It is clear that the new result is interpolated, in a way, between what was found for
bosons and spinless fermions. Also, we can see the importance of taking into account the spin

Figure 5. Plots of the probability density P for finding one fermion in x1 and the other
in x2 when the complete wave function is considered, i.e. the spin is included. Two
cases are analyzed: (a) n1=1 and n2=2 and (b) n1=1 and n2=5. Comparison of
these plots with figure 3 shows that including the spin has a great impact in the shape
of P.
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when considering fermions; if the spin is omitted, the values obtained stray very far from the
correct result (compare figures 4(b) and (c)).

The case of bosons with spin is not of interest. We could consider a neutral atom in a
potential well, but such an object has a spin 0. Consequently, there is only one possible wave
function, which is the symmetric spatial wave function, already considered, multiplied by an
also symmetric function that accounts for the spin part. The spatial probability density would
yield the same result as shown in section 3 for bosons with 0 spin.

5. Conclusions

Some interesting remarks can be made after completing this exercise. First, it is clear that
when the temperature of the box increases, the probability density tends to become uniform in
the box, except for the ‘boundary layer’ effect observed in figure 1. When we think about it,
we see that this is expected. All the wave functions of this model are strictly zero in the walls,
so that the thermalized probability density is also zero, and we get this area where the
probability necessarily falls abruptly to zero. If we worked with a finite potential well, where
the wave functions in the walls are different to zero, this boundary layer phenomenon would
not occur, but rather the thermalized probability density would decrease smoothly towards
zero. This means that the boundary layer phenomenon is, in fact, an artifact caused by the
excessive simplification involved in using the infinite potential well as a model.

Although it is a well-known fact, it is worth emphasizing once again the attraction
(repulsion) of strictly quantum origin that occurs between bosons (fermions), which can be
observed in figure 2 (3). That attraction (repulsion) becomes even clearer when the therma-
lized probability density is analyzed (figure 4). The probability density for finding a particle is
maximum along the diagonal (i.e. when x1=x2) for bosons (figure 4(a)) and is strictly zero
for fermions (figure 4(b)).

Perhaps the most interesting point made in this work has been to show the effect of the
spin in the probability density. It is very common to omit the spin in the development of
models that include electrons, even though this changes the physics of the system. A com-
parison of figures 3 and 5, or of figures 4(b) and (c), shows great difference in the probability
density. And since the probability density is necessary to evaluate the mean value of any
observable, it can be concluded that omitting the spin leads to the prediction of erroneous
values of experimentally observable magnitudes. Naturally, the right approach is to include
the spin in the wave function. However, it is not uncommon to omit it for the sake of
simplicity, but this leads to the wrong results.

To sum up, this article has dealt with a topic of clear educational interest. It integrates
knowledge from two different subjects (quantum mechanics and statistical physics) and the
concepts presented here can be grasped by advanced undergraduate students. Sections 2 and 3
can even be used in a Modern Physics course that does not deal with the topic of identical
particles. In addition, the first part of section 4 can be used to show the difference between
singlet and triplet states in a two-electron system, which is usually a difficult topic for
students.
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