

FORMULARIO DE PRESENTACIÓN DE CURSOS DE POSGRADO

1.1. Indique la denominación del curso propuesto:

Ensamble y anotación de genomas de mitocondrias y cloroplastos de plantas

1.2. Inserto en una carrera de posgrado

Sí No X

1.3. En caso de que el curso ya sea dictado en otra carrera indique la siguiente información:

Carrera	Tipo de dictado	Modalidad	Carácter	

2. Equipo docente.

2.1. Responsable a cargo. (dos docentes son co-responsables del curso)

Apellido: Sánchez Puerta

Nombre: María Virginia

Documento: 25576247

Correo electrónico: mvsanchezpuerta@fca.uncu.edu.ar

CUIT/CUIL: 27-25576247-3

Apellido: García

Nombre: Laura Evangelina

Documento: 31188137

Correo electrónico: lgarcia@fca.uncu.edu.ar

CUIT/CUIL: 24-31188137-6

2.2. Integrantes del equipo docente (repetir cuantas veces sea necesario)

Apellido: Roulet

Nombre: María Emilia

Documento: 36058359

Correo electrónico: meroulet@gmail.com

CUIT/CUIL: 27-36058359-2

Apellido: Tulle

Nombre: Walter

Documento: 28944987

Correo electrónico: wtulle@mendoza-conicet.gob.ar

CUIT/CUIL: 20-28944987-7

3. Fecha probable de dictado

Semestre 1er 2do X mes: Septiembre

4. Número máximo y mínimo de alumnos

Max:10 min: 4

5. Carga horaria propuesta

45 hs

5.1. Exprese la carga horaria relacionada al dictado de la actividad en horas reloj.

Modalidad	Carga teórica	Carga práctica	Total	Porcentaje
Presencial	15	25	40	90
No presencial		5	5	10
Total	15	30	45	100

6. Objetivos (2000 caracteres)

Generales:

- Adquirir destreza en el ensamble y anotación de genomas de cloroplastos y mitocondrias de plantas a partir de datos de secuenciación masiva.

Particulares:

- Conocer los datos de secuenciación de lecturas cortas y largas, sus usos y aplicaciones.
- Evaluar la calidad de los datos de secuenciación.
- Utilizar software diversos para ensamblar datos de secuenciación masiva y evaluar los ensambles.
- Mapear las lecturas sobre genomas de referencia y examinar los mapeos.
- Evaluar, curar y finalizar los ensambles.
- Anotación de los genomas ensamblados.
- 7. Contenidos. (2000 caracteres)
 - Introducción a Unix. Conceptos básicos de la interfaz de línea de comandos.
 Manual de uso del Cluster SARTOI del IBAM-Conicet.

- Tecnologías de secuenciación: Illumina, Oxford-Nanopore, PacBio, etc. Principios de secuenciación masiva: características de las lecturas, de las bibliotecas y del tipo de secuenciación.
- Control de calidad de datos, eliminación o recorte de lecturas de baja calidad.
- Propiedades y estructura de los genomas organelares y consideraciones para su secuenciación.
- Búsqueda y obtención de datos de secuenciación a partir de bases de datos públicas.
- Mapeo (alineamiento) de lecturas sobre genomas de referencia. Visualización y descripción del mapeo.
- Ensamble de novo versus ensamble en base a una referencia. Visualización.
- Evaluación de la calidad del ensamble: N50, cobertura, largo de los contigs, etc.
- Curación y finalización del ensamble genómico.
- Anotación de los genomas mitocondriales y cloroplastídicos.
- Preparación de las muestras y protocolos de envío a centros de secuenciación.
- 8. Describa las actividades prácticas desarrolladas, indicando lugar donde se desarrollan y modalidad de supervisión. (Si corresponde). (2000 caracteres)

Las actividades prácticas están organizadas en trabajos prácticos que incluyen las siguientes actividades:

- Nociones básicas de manejo de línea de comandos.
- Exploración de la base de datos públicas (GenBank y SRA NCBI). Descarga de secuencias de bases de datos públicas o uso de sus propios datos de secuenciación.
- Caracterizar y limpiar los datos en cuanto a la longitud, calidad, presencia de adaptadores, etc. (utilización de FastQC y Trimmomatic).
- Alineamiento de lecturas sobre genomas de referencia. Evaluación y caracterización de las lecturas mapeadas sobre la referencia.
- Búsqueda en GenBank y descarga de genomas organelares de referencia de especies relacionadas a la especie bajo estudio.
- Obtención de un *subset* de las lecturas para el posterior ensamble *de novo*.
- Ensamble de novo del genoma mitocondrial.
- Ensamble del genoma cloroplastídico usando un genoma de referencia.
- Evaluación de la calidad de los ensambles. Caracterización de los contigs obtenidos. Visualización de los mismos en Bandage.
- Curación y finalización del ensamble de los genomas mitocondrial y cloroplastídico.
- Anotación de los genomas ensamblados.

Modalidad de supervisión: puesta en común grupal de las actividades. Seguimiento continuo por parte de los docentes durante el desarrollo de cada trabajo práctico.

- 9. Bibliografía propuesta (2000 caracteres)
- Selección de artículos científicos donde se describan las técnicas de ensamble y se analicen las consideraciones a tener en cuenta al ensamblar o anotar un genoma.

Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer and T. L. Madden. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421. https://doi.org/10.1186/1471-2105-10-421

Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017 Feb 28;45(4):e18. doi: 10.1093/nar/gkw955.

Greiner S, Lehwark P, and R Bock, OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes, *Nucleic Acids Research*, Volume 47, Issue W1, 02 July 2019, Pages W59–W64, https://doi.org/10.1093/nar/gkz238

Jin, J. J., Yu, W. B., Yang, J. B., Song, Y., DePamphilis, C. W., Yi, T. S., & Li, D. Z. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome biology, 21, 1-31. https://doi.org/10.1186/s13059-020-02154-5

Kemena, C., Dohmen, E., & Bornberg-Bauer, E. (2019). DOGMA: a web server for proteome and transcriptome quality assessment. Nucleic Acids Research, 47(W1), W507-W510. https://doi.org/10.1093/nar/qkz366

Knoop V, Volkmar U, Hecht J, Grewe F. 2011. Mitochondrial genome evolution in the plant lineage BT. In: F Kempken ed. Plant mitochondria. New York: Springer. 3–29.

Kozik, A., Rowan, B. A., Lavelle, D., Berke, L., Schranz, M. E., Michelmore, R. W., & Christensen, A. C. (2019). The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS genetics, 15(8), e1008373.

Langmead, B. and S. L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357-359. https://doi.org/10.1038/nmeth.1923

Mower, J. P. (2020). Variation in protein gene and intron content among land plant mitogenomes. Mitochondrion, 53, 203-213.

Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. and Korobeynikov, A. 2020. Using SPAdes de novo assembler. Current protocols in bioinformatics, 70(1), p.e102. https://doi.org/10.1002/cpbi.102

Sloan, D. B., Warren, J. M., Williams, A. M., Wu, Z., Abdel-Ghany, S. E., Chicco, A. J., & Havird, J. C. (2018). Cytonuclear integration and co-evolution. Nature Reviews Genetics, 19(10), 635-648.

Štorchová, H., & Krüger, M. (2024). Methods for assembling complex mitochondrial genomes in land plants. *Journal of Experimental Botany*, erae034. https://doi.org/10.1093/jxb/erae034

Tonti-Filippini, J., Nevill, P. G., Dixon, K., & Small, I. (2017). What can we do with 1000 plastid genomes?. The Plant Journal, 90(4), 808-818.

Wick, R. R., M. B. Schultz, J. Zobel and K. E. Holt. 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31: 3350-3352. DOI 10.1093/bioinformatics/btv383.

Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. *PLOS Computational Biology* **13**(6): e1005595.

Wicke, S., Schneeweiss, G. M., Depamphilis, C. W., Müller, K. F., & Quandt, D. (2011). The

evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant molecular biology, 76, 273-297.

Wu, Z. Q., Liao, X. Z., Zhang, X. N., Tembrock, L. R., & Broz, A. (2022). Genomic architectural variation of plant mitochondria—A review of multichromosomal structuring. Journal of Systematics and Evolution, 60(1), 160-168.

- Modalidad de evaluación y requisitos de aprobación y promoción. (2000 caracteres)
 Evaluación continua a través de la realización de las actividades propuestas.
- 11. Tiempo de entrega de evaluaciones y calificaciones una vez finalizado el curso Una semana después de finalizar el cursado.
- 12. Ingrese toda otra información que considere pertinente, incluidos requisitos específicos si corresponde. (1600 caracteres)

Pre-requisitos

- 1. Conocimientos avanzados del idioma inglés (literatura en inglés)
- 2. Preferentemente estudiantes que estén realizando su tesis doctoral o que ya hayan finalizado su doctorado.
- 3. Acceso al uso de una computadora personal y conexión a internet.
- 4. Preferentemente estudiantes con datos de secuenciación disponibles para ser utilizados durante el cursado.