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Tumors of distinct tissues of origin and genetic makeup display
common hallmark cellular phenotypes, including sustained pro-
liferation, suppression of cell death, and altered metabolism. These
phenotypic commonalities have been proposed to stem from
disruption of conserved regulatory mechanisms evolved during
the transition to multicellularity to control fundamental cellular
processes such as growth and replication. Dating the evolutionary
emergence of human genes through phylostratigraphy uncovered
close association between gene age and expression level in RNA
sequencing data from The Cancer Genome Atlas for seven solid
cancers. Genes conserved with unicellular organisms were strongly
up-regulated, whereas genes of metazoan origin were primarily
inactivated. These patterns were most consistent for processes
known to be important in cancer, implicating both selection and
active regulation duringmalignant transformation. The coordinated
expression of strongly interacting multicellularity and unicellularity
processes was lost in tumors. This separation of unicellular and
multicellular functions appeared to be mediated by 12 highly
connected genes, marking them as important general drivers of
tumorigenesis. Our findings suggest common principles closely tied
to the evolutionary history of genes underlie convergent changes at
the cellular process level across a range of solid cancers. We propose
altered activity of genes at the interfaces between multicellular and
unicellular regions of human gene regulatory networks activate
primitive transcriptional programs, driving common hallmark fea-
tures of cancer. Manipulation of cross-talk between biological
processes of different evolutionary origins may thus present
powerful and broadly applicable treatment strategies for cancer.
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Progression to cancer involves repeated selection for common
cellular phenotypes, including sustained proliferation; altered

energy metabolism; and abnormal responses to signals controlling
cell growth, adhesion, and differentiation. These hallmark fea-
tures of cancer (1) demonstrate broad alteration of basic cellular
processes is a consistent characteristic of tumors regardless of
tissue of origin and genetic background. However, the overall
principles guiding the convergence to shared molecular proper-
ties in cancer remain unclear.
Cancer has been suggested to result from an atavistic process,

whereby the activation of primitive, highly conserved programs
(2, 3) leads to molecular phenotypes and population dynamics
(4) similar to those of unicellular organisms (5). Genes com-
monly involved in cancer associate with two major evolutionary
events: the emergence of self-replicating cellular life and the
appearance of simple multicellular organisms (6, 7). The dis-
ruption of genes and processes that appeared in early metazoan
life to enhance intercellular cooperation is expected to be a re-
current driver of carcinogenesis, as implicated by the widespread
occurrence of cancer across the tree of multicellular life (8, 9)

and the common dysregulation of pathways that evolved to
sustain multicellularity, such as Wnt and integrins (10, 11).
The evidence presented to date to support atavistic trans-

formation in tumors has been primarily observational, with limited
comprehensive molecular evidence. It has been reported that
disruption of genes tied to multicellularity confers advantages to
malignant tumor clones (12), the expression of highly conserved
genes is a feature of drug resistance in tumor cells (7), and there is
global convergent activation in tumors of transcriptional programs
associated with dedifferentiation (12, 13). These findings suggest
deeper understanding of the differences in the expression and
regulation of ancient unicellular and more recently evolved mul-
ticellular gene sets during malignant transformation will be crucial
for uncovering the molecular basis of common tumor phenotypes
and will provide new targets and strategies for cancer therapy.
To investigate atavistic transformation as a core element of

tumorigenesis, we combined phylogenetic and interaction data
with RNA-sequencing data from The Cancer Genome Atlas
(TCGA) for seven solid tumor types to determine how changes
in gene expression patterns in tumors are tied to evolutionary
histories of the genes and processes involved.

Results
Genes Originating in Unicellular and Multicellular Ancestors of Humans
Show Divergent Expression Patterns in Tumors. We determined the
point of emergence in evolutionary history of 17,318 human genes
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Cancer represents a breakdown of molecular mechanisms evolved
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by phylostratigraphy (14). Human genes were classified into 16
clades (phylostrata) that represent the major evolutionary innova-
tions, based on the most distant species with a clear ortholog (SI
Appendix, Figs. S1 and S2, and Dataset S1). Phylostrata assign-
ments were corroborated by functional enrichment analysis (SI
Appendix, Fig. S3), with genes assigned to more primitive phylos-
trata enriched for basal cellular processes, as opposed to those
involved in complex cellular functions assigned to later phylostrata,
demonstrating our assignments are not unduly affected by potential
biases (15). Human genes assigned to phylostrata 1–3 date back to
unicellular ancestors (UC genes), whereas genes assigned to later
phylostrata emerged in multicellular ancestors (MC genes).
To investigate how the expression of genes in tumors is related

to their evolutionary origins, we calculated the transcriptome age
index (TAI), using RNAseq gene expression from seven tumor
types from TCGA (SI Appendix, Tables S1 and S2): lung adeno-
carcinoma (LUAD) and lung squamous cell carcinoma (LUSC),
breast (BRCA), prostate (PRAD), liver (LIHC), colon (COAD),
and stomach (STAD), with 3,473 tumor samples in total and their
respective normal tissues (386 samples). The TAI is a cumulative
measure of the expression levels of all genes in a sample weighted
by evolutionary age (16) (Eq. 1). Lower values of the TAI are
associated with higher expression of ancient genes and represent
older transcriptomes. After accounting for cross-contamination
(SI Appendix, SI Methods), all tumors had consistently lower TAI
values than their normal counterparts (Fig. 1A), with an in-
creased percentage of transcripts coming from unicellular genes
with respect to normal tissues from the same organ (Fig. 1B).
Thus, tumor transcriptomes shift to stronger expression of more
highly conserved genes, through up-regulation of genes originating
from primitive unicellular ancestors and broad inactivation of
more recently evolved genes. Our results are robust to alternate

phylostratum assignments (17), are replicated in microarray data,
are not solely driven by replication genes, are consistent across
different magnitudes of expression levels, and are unlikely to be a
simple consequence of global gene inactivation in tumors (per-
mutation P = 0.035; SI Appendix, Figs. S4–S9 and Table S3). At the
level of individual phylostrata, genes with orthologs in bacteria,
yeast, and protozoa showed clear and consistently elevated ex-
pression in all tumor types (Fig. 1C, pink), whereas genes assigned
to metazoan phylostrata predating eutherian (placental) mammals
were primarily down-regulated (Fig. 1C, blue). Expression levels of
genes, those unique to eutherian mammals, showed little difference
between tumor and normal samples (Fig. 1C, yellow).
Our results reveal a strong global trend of preferential ex-

pression of genes of unicellular origin vs. genes of metazoan
origin, concordant with an atavistic regression away from mul-
ticellularity at the cellular level. Interestingly, the inflection point
between up- and down-regulation in tumors coincides with the
phylostratum representing genes shared with Opisthokonta,
whose life cycles often comprise both free-living unicellular and
multicellular colonial stages. Together, these findings suggest a
strong association between the evolution of complexity and mul-
ticellularity and patterns of gene expression in cancer.
To investigate the association between the preferential ex-

pression of unicellular genes in tumors and clinical features, we
stratified PRAD samples by Gleason score, a well-defined path-
ological measure of dedifferentiation that accounts for tumor
heterogeneity. The TAI showed a strong decreasing trend with
Gleason score, in both the TCGA (Fig. 1E) and an independent
dataset (18), and similar results were obtained using the grade of
LIHC and STAD tumors (SI Appendix, Figs. S10 and S11). We
found negative correlation between the TAI and the proliferation
marker MKI67 (19) in prostate and lung (adenocarcinoma and
squamous) tumor samples (Fig. 1E and SI Appendix, Fig. S12),
indicating that tumor samples with a more ancient transcriptome
tend to have higher proliferation rates. The link between the TAI
and loss of differentiation and an increased proliferation suggests
it mirrors clinically relevant features, and primitive expression
phenotypes push tumor cells toward more malignant states and
thus provide a signature of potential clinical utility.

Genes of Unicellular Origin Drive Activation of Hallmarks Required for
Tumorigenesis. To examine the functional consequences of the
shift toward increased expression of UC genes in tumors, we
used the Generic GOslim set from the Gene Ontology (GO)
Consortium (20, 21), a comprehensive classification of genes
involved in 69 major cellular processes, with low redundancy
between sets (SI Appendix, SI Methods and Fig. S13). GOslims
were classified as predominantly unicellular (38/69 = 55.07%) or
multicellular (19/69 = 27.54%) based on enrichment of gene
ages, with GOslims such as cell cycle and metabolic processes
dated as unicellular and those related to tissue differentiation or
increased organismal complexity labeled multicellular (SI Ap-
pendix, Table S4 and Fig. S14).
Differential expression analysis of GOslims revealed a striking

level of consistency across all seven tumor types (Fig. 2A, Right
and SI Appendix, Fig. S15), suggesting strong convergent evolu-
tion at a molecular level. We observed uniform inactivation
of cellular processes unique to metazoans, consistent with the
widespread reprogramming of the intracellular signaling net-
works observed during tumorigenesis. In sharp contrast, we ob-
served increased expression of unicellular processes closely tied
to enabling hallmarks, including sustaining proliferative signal-
ing, cell death avoidance, and genomic instability (1). This strong
bias was consistently found across all seven tumor types, suggesting
preferential activation of unicellular genes and concomitant sup-
pression of multicellular processes generate the molecular char-
acteristics essential for tumorigenesis in solid tissues, independent
of tissue of origin and etiology. These signatures are driven by
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Fig. 1. Overexpression of genes that date back to UC ancestors are pref-
erentially expressed in tumors. (A) TAI of tumor and normal samples, by
subtype. A lower TAI corresponds to higher expression of genes from earlier
phylostrata. Tumors have lower TAI scores (more ancient transcriptomes)
than normal samples (Wilcoxon tests: ***P < 0.01). (B) Percentage of tran-
scriptome composed of UC genes increases in all tumor subtypes. Shaded areas:
median percentages across samples. (C) Difference in proportion of tran-
scriptome composed of genes from each phylostratum in tumors vs. normal
samples, by subtype. (D) TAI decreases as degree of differentiation increases as
measured by Gleason score (Jonckheere–Terpstra test P value = 2.79 × 10−16).
(E) Negative correlation between the proliferation marker, MKI67, and the TAI
(Spearman correlation = −0.537, P value = 1.1 × 10−7) in prostate tumors.
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processes beyond dedifferentiation, as they are distinct from
those observed in stem cells (SI Appendix, SI Note 1 and Figs.
S16 and S17).
However, whether a unicellular process was activated or not was

dependent on its functional role, as we observed consistent down-
regulation of many unicellular processes, particularly metabolic
processes involving complex molecules, reflecting the metabolic
reprogramming commonly seen in tumors. These patterns sug-
gest induction of primitive processes in tumors is not merely a
side effect of progressive stochastic loss of metazoan gene reg-
ulatory mechanisms, but rather the result of coordinated and
selective processes targeting specific pathways. Thus, a unifying
theme behind the emergence of many of the common hallmarks
of cancer could be a controlled transition to more primitive
cellular phenotypes.
We hypothesized the transcriptional states of individual cel-

lular processes are functions of the different roles and the rela-
tive overall impact of UC and MC genes within each process.
Dividing genes within each GOslim into UC and MC compo-
nents according to the ages of the genes revealed that in 70.4%
of GOslims (38/54), the log of the fold change in gene expression
(logFC) of the UC component was significantly higher than that
of the MC component (Wilcoxon one-sided test adjusted
P value <0.05), independent of the age of the cellular process
(Fig. 2A, Left). In no case did we find a MC component with a
significantly higher logFC than the UC component. Even within
suppressed biological processes, the expression of UC genes was
often maintained or even enhanced within tumors, in contrast to
MC genes, which primarily showed negative logFC. Therefore,

the preferential expression of genes of unicellular origin across
biological functions underscores their central role in the transi-
tion to a tumorigenic state.
UC components also displayed larger absolute logFC than

MC components in GOslims up-regulated in tumors (Fig. 2B),
demonstrating enhanced expression of UC genes plays a bigger
role in driving the changes of up-regulated processes than does
suppression of MC genes. In contrast, down-regulated pro-
cesses show the opposite trend, suggesting that their reduced
expression is mostly linked to the inactivation of MC genes.
This supports a model whereby genes of a unicellular and
multicellular origin modulate the overall expression of cellular
processes by acting as two opposing forces, with the resulting
activity of the process being the result of a preferential bias
toward one of them.

The Activation of Response to Stress Mechanisms in Tumors Is
Associated with Their Evolutionary Age. We investigated the bi-
ological processes included under the stress response GO term, a
broad and varied category highly relevant to tumor biology
thought to be central to the atavistic process in cancer (2, 3, 22).
We found 55% of stress responses conserved with unicellular
species were up-regulated in tumors, whereas 69% of stress re-
sponses exclusive to multicellular organisms were down-regulated
(Fig. 2C). This is unlikely due to chance (P = 0.01 for UC; P =
0.02 for MC) and was not seen in stem cells (SI Appendix, SI
Methods, SI Note 1, and Fig. S17). Our results suggest tumor
survival in response to multiple microenvironmental challenges is
dependent on primitive response mechanisms.

U
C

M
C

y

y
y
y

y

y

r

y

Transcription 
& translation 

Symbiosis

Cell cycle 

Protein assembly, 
folding & targeting 

Autophagy
Assembly

Transport 

Unicellular
response to stress 

Metabolic
process 

Multicellular 
response to stress 
Complex systems 

Cell differentiation,
proliferation & death 
Extracellular matrix 

and adhesion 
Signaling & cell 
communication 

Motility 
Development and 

morphogenesis

U
nicellular

M
ulticellular

-2 -1 0 1 
logFC

UC MC

LU
AD 

LU
SC 

BRCA
PRAD
LIH

C 
COAD
STA

D

-1.5 0 0.5 
logFC

M
ed

ia
n 

di
ffe

re
nc

e 
of

 th
e 

lo
gF

C
 o

f U
C

 a
nd

 M
C

 c
om

po
ne

nt
s 

-1.25 

-1.00 

-0.75 

-0.50 
-0.25 

0.00 

0.25 

0.50 

Median logFC of cellular process 
-1.

25
 

-1.
00

 
-0.

75
 

-0.
50

 
-0.

25
 
0.0

0 
0.2

5 
0.5

0 
-1.

50
 

0.7
5 

Downregulated

UC slim
MC slim

Cellular response 
to stress 

Response 
to stress 

Response to
oxidative stress 

Multicellular organismal 
response to stress 

Defense 
response 

Innate immune 
response 

Response to
wounding 

Response to
hyperoxia

Regulation of 
translation in 
response to

stress 

Cellular
response 
to osmotic 

stress 
Response to
topologically

incorrect
protein 

Cellular response 
to DNA damage stimulus

DNA
repair

Signal transduction 
in 

response to DNA
damage 

Border color
UC response 
MC response10

Mean logFC

C 

-4.1

BA Upregulated

Fig. 2. Effect of the expression patterns of UC and MC genes on cellular processes. (A) Expression patterns of cellular processes. (A, Right) LogFC of processes,
showing up-regulation of a subset of UC processes and widespread down-regulation of MC processes across tumors. (A, Left) Median logFC of UC and MC
components of processes. The logFCs of UC components are more positive or not significantly different from those of MC components, indicating UC genes
push processes toward activation. Bars: range in tumors. Triangles: UC component greater (Wilcoxon test P value <0.05) than MC component. (B) Difference in
the absolute logFC of UC and MC components of GOslims (y axis) vs. overall logFC for the GOslim in tumors vs. normal samples (x axis). Up-regulated GOslims
are driven by UC genes, whereas down-regulated ones are driven by MC genes. Points: median logFC across tumors. Error bars: range in tumors. Linear model
P value = 1.9 × 10−10. (C) Response to stress GOterm tree. UC stress-response programs tend to be up-regulated in tumors (55%), whereas recently acquired
ones are down-regulated (69%). Node size is proportional to the number of genes annotated with the GOterm.

6408 | www.pnas.org/cgi/doi/10.1073/pnas.1617743114 Trigos et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1617743114/-/DCSupplemental/pnas.1617743114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1617743114/-/DCSupplemental/pnas.1617743114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1617743114/-/DCSupplemental/pnas.1617743114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1617743114/-/DCSupplemental/pnas.1617743114.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1617743114


This increased expression of processes originating in unicel-
lular ancestors of modern life, such as DNA damage stimulus, is
consistent with mechanisms needed to withstand the genetic
instability typical of tumors. In contrast, advanced DNA repair
processes exploited by multicellular organisms, such as pyrimi-
dine dimer repair and specific double-strand break repair, were
down-regulated. An exception was the up-regulation of signal
transduction in response to DNA damage, which likely evolved
as a support system for the more primitive responses to DNA
damage, resulting in strong coregulation.
The transition to a UC state in tumors is supported by pref-

erential activation of stress response mechanisms developed to
withstand stresses encountered by unicellular ancestors, many of
which (hypoxia, nutrient deprivation, and DNA damage) would
be similar to environmental pressures encountered by rapidly
expanding tumors. Conversely, the damping down of multicel-
lular functions in tumors appears to extend to stress response
processes as well. The resulting phenotypic alterations could
significantly impact tumor evolution and response to treatment.

Disruption of the Coexpression Between Unicellular and Multicellular
Processes in Tumors Enhances Hallmark Phenotypes. We hypothe-
sized convergent patterns of expression of cellular processes with
respect to evolutionary age were supported by coregulation
mechanisms between processes. We first calculated the activity
of cellular processes, using single-sample gene set enrichment
analysis (ssGSEA) (23), which calculates the degree of coordi-
nated up- and down-regulation of genes in individual samples
and can correctly classify samples according to subtype (SI Ap-
pendix, Fig. S18). The Spearman correlation between pairs of
processes was calculated using ssGSEA scores, constructing a
network of correlation of expression between cellular processes.
To distinguish highly coexpressed pairs of processes with high

numbers of physical and regulatory interactions from those pairs
where coexpression occurred indirectly, we developed a metric,
interconnectedness (I), to quantify the degree of interaction be-
tween cellular processes (Eq. 3). Our metric normalizes the
number of direct physical and genetic interactions between pro-
teins of every pair of processes by the total number of possible
interactions, capturing functional dependencies, and the layout of
interactions between functional processes obtained during evolu-
tion (SI Appendix, Figs. S19–S21, and Dataset S2). The highest
interconnectedness occurs between unicellular processes (UC–
UC), whereas pairs of multicellular processes (MC–MC) were the
least connected, and unicellular and multicellular processes (UC–
MC) showed intermediate interconnectedness. We ranked pairs of
processes by interconnectedness score and selected the top 10% of
each type (UC–UC, UC–MC, and MC–MC) to build a tran-
scriptional network of cellular processes. We used the median
correlation across the seven TCGA datasets to represent the
typical tumor and normal coexpression states (Fig. 3A). Our net-
work is based on PathwayCommons (24), but similar results are
also obtained with other databases (SI Appendix, Figs. S22–S26).
The expression of pairs of UC–UC processes overwhelmingly

showed positive correlation in both normal (64/70 pairs) and
tumor (66/70 pairs) samples, with correlation being significantly
stronger in tumors (Kolmogorov–Smirnov test P value = 0.04; Fig.
3 B and C, pink circle; SI Appendix, Figs. S27 and S28). This sug-
gests promotion of simultaneous activation of UC functions and is
consistent with the strong patterns of up-regulation of unicellular
processes observed in all tumor types analyzed (Fig. 1). Although
pairs of MC processes also showed a consistent positive coex-
pression in tumors (17/17) and in normal samples (16/17), the
distribution of correlations was not significantly different (P value =
0.12), indicating that the coregulation between multicellular re-
gions of the interaction network is mostly unaltered in tumors.
In contrast, UC and MC processes were predominantly neg-

atively correlated, with the number of negatively correlated pairs

of processes significantly greater in tumors (57/72, 79.2%) than in
normal samples (41/72, 56.9%) (Fisher test P value = 0.0035; Fig.
3 B and C, red circle) or in stem cells (38/72, 52.8%; SI Appendix,
SI Note 1). Significant differences were also seen in correlation of
expression between UC–MC pairs in tumors and normal samples
(KS test P value = 0.0066), and these trends were consistent re-
gardless of the absolute level of interconnectedness between the
processes (SI Appendix, Figs. S28 and S29). We propose this to be
a form of mutual exclusivity between cellular processes of different
evolutionary histories, where the limited integration of unicellular
and multicellular processes is exacerbated in tumors, leading to an
uncoupling between and increased independence of UC and MC
network regions. Although mutual exclusivity has been noted
previously for specific pairs of processes (e.g., cell cycle and dif-
ferentiation; SI Appendix, Table S5), our results demonstrate
general and widespread mutual exclusivity in tumors between UC
and MC biological functions, indicating its fundamental impor-
tance to tumor development.
The strong convergence in these patterns across different tu-

mors is further evidenced by the marked reduction in the vari-
ability of coexpression in tumors with respect to normal
differentiated tissues (Fig. 3D and SI Appendix, Fig. S30). This
consistent loss of diversity of regulation of cellular processes
suggests common selective pressures lead to actively regulated
changes of coexpression between cellular processes of distinct
evolutionary history in cancer. Furthermore, this process is con-
strained by defined limits, with levels of coexpression in tumors
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Fig. 3. Patterns of coexpression between highly interconnected cellular pro-
cesses are disrupted in tumors. (A) Transcriptional network of cellular processes in
tumors, displaying the median correlation (edge brightness) between processes
across the seven tumor types. (B) Number of positive and negative interactions
between processes. Dots correspond to results from each tumor type. (C) Median
correlation in expression between cellular processes in tumors and normal
samples. (D) Variance in the correlation of expression between cellular processes,
showing decreased variability in tumors with respect to normal samples.
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consistently within the ranges of those of normal samples (SI Ap-
pendix, Fig. S31), suggesting that system-level constraints limit the
viable paths taken by tumor cells.
We found 20 UC–MC interacting pairs switched from posi-

tive to negative correlation, whereas only 4 pairs switched in
the opposite direction (Fig. 3C, orange square; SI Appendix,
Table S6). Nearly half of them involved cell death (11/24;
45.83%), consistent with the view that cell death is tied to many
of the major regulatory and signaling changes that occur in
tumors. The strong selection for mutually exclusive associa-
tions between these specific gene sets across multiple tumor
types indicates disruption of the links between them may
drive tumor development.

Identifying Genes Modulating the Altered Interactions Between
Network Regions of Different Evolutionary Age. We hypothesized
the disruption in coexpression of UC and MC processes was due
to altered interactions between genes linking these two parts of the
human gene network, forming key vulnerabilities. We focused on
a pair of cellular processes whose coexpression was among the
most strongly disrupted in tumors, cellular junction organization
and chromosome organization, which displayed a pronounced shift
from positive correlation in normal tissues (median: 0.21) to strong
negative correlation in tumors (median: −0.36). This selection for a
drastic change in coexpression suggests mutual exclusivity between
these processes is advantageous for tumorigenesis.
We reasoned the key genes modulating this change would

be highly connected across the two gene sets and have altered
coexpression with many of their interaction partners. We devel-
oped a “hubness” metric for each gene with annotated interac-
tions between cellular junction organization and chromosome
organization, calculated as the sum of the absolute difference of
change in expression correlation between its connecting partner
genes (Eq. 4). This metric is highly correlated with the number of
interactions of a gene (SI Appendix, Fig. S32), a property asso-
ciated with relative importance in modulating functional re-
sponses (25). Ranking by this metric uncovered 12 genes (RCC2,
TLN1, VASP, ACTG1, PLEC, CTTN, DSP, ILK, PKN2, CTNNA1,
CTNND1, and PKP3) whose hubness was consistently in the top
10% across all seven tumor types, identifying a set of genes that
commonly mediate changes in coexpression between cellular junc-
tion organization and chromosome organization.
All 12 genes interact with genes belonging to a signature of

chromosomal instability associated with poor clinical outcome and
metastasis (26) (SI Appendix, Fig. S33), suggesting these genes have
roles in regulatory networks linking genomic instability and me-
tastasis during tumor progression. Many are involved in pathways
highly relevant to cancer (SI Appendix, Table S8), including
4 within the Rap1 signaling pathway, which has yet to be largely
studied in the context of cancer, and experimental evidence sug-
gests they can modulate malignant characteristics in specific tumor
types (SI Appendix, Table S7). However, here we associate these
genes with seven tumor types, uncovering a wider role as general,
pan-cancer modulators of tumor development. CRISPR screen
data for these genes and 91 additional genes involved in other pairs
of UC–MC processes negatively correlated across tumors revealed
knockdown of many of the identified UC genes hinders growth of
multiple cancer cell lines (SI Appendix, SI Note 2, Fig. S34, and
Tables S9 and S10), indicating their potential as viable drug targets.
The association of key genes promoting mutual exclusivity in

tumors with main features of tumorigenesis supports the view
that that mutual exclusivity in the coregulation of unicellular and
multicellular processes is under positive selection during tumor
formation and progression across multiple tumor types. Drugs
that target these fundamental points of vulnerability or that
abolish this mutual exclusivity would have great potential as ef-
fective broad-spectrum treatment strategies.

Discussion
Detailed transcriptome analysis of 3,473 tumor and 386 normal
samples from TCGA demonstrates gene expression changes in tu-
mors are closely tied to the evolutionary ages of the genes involved.
Our findings suggest convergence of tumors to similar molecular
phenotypes is tied to common principles guiding patterns of coex-
pression of cellular processes according to their evolutionary his-
tories. This is the most comprehensive molecular evidence to date
that a widespread shift to preferential expression of genes conserved
in primitive, single-celled species is a common feature of tumors.
This is concordant with the atavism hypothesis, which states cancer
results from a transition to a more “selfish” unicellular mode of life,
not merely through a passive stochastic occurrence but as an active,
directed process driven by selection (2, 3, 27). Our findings dem-
onstrate the up-regulation of unicellular GO terms is limited to
certain processes and pathways, indicative of selection, and loss of
coordinated expression between multicellular and unicellular pro-
cesses across multiple tumor types, implicating altered regulation.
Although convergent evolution in tumors has been described

in the context of gene expression (13), here we show convergent
evolution is also apparent at the level of coexpression of cellular
processes, according to their point of evolutionary emergence.
Tumorigenesis reinforces the interdependence between unicel-
lular genes while enhancing segregation between the unicellular
and multicellular components of the gene regulatory network.
Such mutual exclusivity would promote loss of multicellular fea-
tures in tumors as activation of unicellular genes occurs in re-
sponse to selective pressures favoring increased replication or
activation of basal cellular processes, leading to an increasingly
atavistic malignant phenotype with increased selective advantage.
Gene expression in cancer with respect to evolutionary age is

not a simple dichotomy, as multicellular biological processes
such as hormone receptors drive several tumor types. However,
the highly reproducible nature of our observations and the signs
of regulatory control behind them suggests treatment strategies
that manipulate the fundamental systems-level rewiring at the
interface between more primitive and more advanced compo-
nents of gene regulatory networks in cancer could have broad
therapeutic application and high specificity for tumor cells.
Several compounds already in clinical use target primitive funda-

mental biological functions, e.g., ref. 28. Our results showing many
primitive functions up-regulated together in tumors raise the possi-
bility of going a step beyond, to simultaneously target multiple in-
dependent unicellular processes. Another approach involves stressing
multicellular systems that are inactive or diminished in cancer, a
“target the weakness” approach (29) by altering the intra- or extra-
cellular environment of tumor cells to put cells that have lost or
inactivated a particular multicellular pathway at a selective disadvan-
tage. Our analysis shows stress response pathways composed primarily
of multicellular genes could also be manipulated for clinical benefit.
Given strong anticorrelation in expression between multicel-

lular and unicellular genes is apparent in many tumors, rees-
tablishing the balance between the activities of unicellular and
multicellular processes could push tumors back to a more normal
state and/or achieve a form of synthetic lethality. Empirical
support for this approach comes from studies showing inhibition
of glycolysis increased sensitivity of cancer cells to pharmaco-
logically induced apoptosis (30). Cell death displayed consis-
tently altered correlations with many core metabolic and cell
division processes, suggesting manipulation of other biological
functions could further prime tumor cells for apoptosis.
Our approach uncovered previously unappreciated association be-

tween biological processes exploited by tumors. We could narrow
down 12 key genes bridging the cell junction organization and chro-
mosome organization processes, which are biomarkers or regulators
of malignancy in vitro for at least one cancer, validating the approach,
but our analysis also implicates them as potential common drivers of a
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number of cancers. To our knowledge, no studies have yet pub-
lished potential therapeutic agents for these genes, making them
attractive targets for prioritization in future drug screens.
Our study applies a detailed molecular framework to view

cancer as a failure of the systems supporting increased organis-
mal complexity (31, 32). This is an important step toward un-
derstanding how macroevolutionary processes left vulnerabilities
that lead to cancer and how they may be exploited in practical
terms to improve treatment outcomes, facilitating the applica-
tion of “Darwinian medicine” to oncology (33).

Methods
Phylostratigraphy of Human Genes. A total of 17,318 human genes were
mapped to a phylogenetic tree (Dataset S1), consisting of 16 clades (phylos-
trata), ranging from including all cellular organisms (phylostratum 1) to Homo
sapiens (phylostratum 16) (SI Appendix, Fig. S1). The most ancient phylos-
tratum represented in a group of orthologs from the OrthoMCL database
version 5 (34) was considered as the point of emergence of the human protein.

Transcriptomic Analysis Incorporating Gene Ages. RNAseq expression data
were downloaded from TCGA (https://portal.gdc.cancer.gov/) (SI Appendix,
Table S2). The transcriptome ages of tumor and normal samples were cal-
culated with the TAI method (16),

TAI=
Pn

i=1psi × eiPn
i=1ei

, [1]

where psi is the phylostratum of each gene i and ei is the gene expression
value of gene i.

The proportion of the total library size represented by each phylostratum
in each sample was calculated using Eq. 2,

Ppsi =

Pmi
j=1eijPn

i=1

Pmi
j=1eij

, [2]

where Ppsi is the proportion of expression abundance corresponding to
genes of phylostratum i, eij is the expression value of gene j in the phylos-
tratum i, mi is the total number of genes in phylostratum i, and n is the total
number of phylostrata. The Ppsi values were averaged across all samples for
each normal and tumor type, and the tumor vs. normal difference in pro-
portions was determined by subtraction.

Functional Analyses. GOslims were obtained from Gene Ontology (gen-
eontology.org/), and their ages were calculated by permutation of the ages
of the genes annotated with each GOslim (SI Appendix, Table S4). Tumor vs.
normal differential expression analysis of GOslims and UC and MC compo-
nents was conducted using QuSAGE (35). For the response to stress tree, the
average logFC obtained by QuSAGE for each term was calculated across
tumors, regardless of the significance of individual false discovery rate.
Statistical significance of trends was assessed using permutation tests (SI
Appendix, SI Methods).

Construction of Transcriptional Coexpression Networks. The degree of in-
teraction I (Dataset S2) was calculated for each pair of GOslims (i and j),

I=
Eij −Unique

�
Ei∩ij + Ej∩ij

�
�
Gi −Gi∩j

�
*
�
Gj −Gi∩j

� =
Number of edges between GOslims
Total number of possible edges

, [3]

with Eij being the number of edges joining genes of GOslim i with
GOslim j, and Ei∩ij and Ej∩ij are the number of edges in GOslim i or j that
are also found in Eij. Gi and Gj are the numbers of genes of pathways i
and j, respectively, and Gi∩j is the number of genes shared by GOslims i
and j.

Gene Hubness Score. Edges connecting genes of cell junction organization and
chromosome organization processes were weighted by the Spearman cor-
relation of expression in each tumor and normal type. We defined

Hubness of genei =
XN

j=1

��Correlation tumorj −Correlation normalj
��, [4]

with i being a gene in the bipartite graph and j an edge linking genes in
separate processes.

Code is available at https://github.com/cancer-evolution/Evolutionary-analysis-
of-cancer-transcriptomes.
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