Álgebra Lineal

Primer semestre de 2016

Ejercicios adicionales

Ejercicio 1. Sean $f: \mathbb{R}^3 \to \mathbb{R}^2$ y $g: \mathbb{R}^2 \to \mathbb{R}^3$ transformaciones lineales. Demostrar que $g \circ f$ no es un isomorfismo.

Ejercicio 2. Sea V un espacio vectorial de dimensión finita y sea $f:V\to V$ una transformación lineal. Supongamos que existe una transformación lineal $g:V\to V$ tal que $f\circ g=\mathrm{Id}$.

- (a) Demostrar que f es un isomorfismo y que $f^{-1} = g$.
- (b) Dar un ejemplo que muestre que si V no es de dimensión finita entonces f no es necesariamente un isomorfismo.

Ejercicio 3. Sea \mathbb{K} un cuerpo y sean $l, m, n \in \mathbb{N}$. Sea $A \in \mathbb{K}^{l \times m}$ y sea $f : \mathbb{K}^{m \times n} \to \mathbb{K}^{l \times n}$ definida por f(X) = AX. Demostrar que f es un isomorfismo si y sólo si l = m y A es una matriz inversible.

Ejercicio 4. Sea V un espacio vectorial de dimensión finita y sean $f, g: V \to V$ transformaciones lineales. Demostrar que las siguientes proposiciones son equivalentes.

- (a) Existen bases B y B' de V tales que $M_B(f) = M_{B'}(g)$.
- (b) Existe un isomorfismo $h: V \to V$ tal que $g = h \circ f \circ h^{-1}$.

Ejercicio 5. Sea \mathbb{K} un cuerpo y sea V un \mathbb{K} -espacio vectorial de dimensión finita. Sea $n = \dim(V)$ y sea $m \in \mathbb{N}$. Sean $\varphi_1, \ldots, \varphi_m \in V^*$ y sea $f : V \to \mathbb{K}^m$ la transformación lineal definida por $f(v) = (\varphi_1(v), \ldots, \varphi_m(v))$. Demostrar que f es un epimorfismo si y sólo si $\{\varphi_1, \ldots, \varphi_m\}$ es un conjunto linealmente independiente en V^* .

Ejercicio 6. Sea \mathbb{K} un cuerpo y sea $n \in \mathbb{N}$. Para cada matriz $B \in \mathbb{K}^{n \times n}$ definimos $g_B \in (\mathbb{K}^{n \times n})^*$ por $g_B(A) = \operatorname{tr}(B^t A)$. Demostrar que para todo $\varphi \in (\mathbb{K}^{n \times n})^*$ existe una única matriz $C \in \mathbb{K}^{n \times n}$ tal que $g_C = \varphi$.

Ejercicio 7. Sea V un \mathbb{C} -espacio vectorial de dimensión finita.

- (a) Sea $f: V \to V$ una transformación lineal. Demostrar que f se puede expresar como suma de una transformación lineal diagonalizable y una transformación lineal nilpotente.
- (b) ¿Es única la descomposición del item anterior?

Ejercicio 8. Sea $f: \mathbb{R}^4 \to \mathbb{R}^4$ y sea B una base de \mathbb{R}^4 cuyos elementos no son autovectores de f. Supongamos que

$$M_B(f \circ f) = \left(egin{array}{cccc} 4 & 0 & 5 & -5 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & -5 \\ 0 & 0 & 0 & 4 \end{array}
ight) \; .$$

Demostrar que f es diagonalizable.

Ejercicio 9. Sea $n \in \mathbb{N}$ y sea $A \in \mathbb{C}^{n \times n}$ una matriz de rango 1.

- (a) Probar que el polinomio característico de A es $\chi_A(x) = (x \operatorname{tr}(A))x^{n-1}$.
- (b) Deducir que $\det(\mathrm{Id}_n A) = 1 \mathrm{tr}(A)$.
- (c) Determinar todas las formas de Jordan posibles de A según el valor de tr(A).

Ejercicio 10.

- (a) Sea $n \in \mathbb{N}$ y sea $A \in \mathbb{C}^{n \times n}$ tal que $m_A(x) = (x+1)x$. Demostrar que A^2 es semejante a -A.
- (b) Sea $n \in \mathbb{N}$ y sea $A \in \mathbb{C}^{n \times n}$ tal que $m_A(x) = (x+1)^2 x$. Demostrar que A^2 es semejante a -A.
- (c) Sea $n \in \mathbb{N}$ y sea $A \in \mathbb{C}^{n \times n}$ tal que $m_A(x) = (x+1)^r x$ para algún r. Demostrar que A^2 es semejante a -A.

Ejercicio 11. Sean U, V y W espacios vectoriales de dimensión finita y sean $f: U \to V$ y $g: V \to W$ transformaciones lineales. Demostrar que $\dim(\operatorname{Nu}(g \circ f)) \leq \dim(\operatorname{Nu}(f)) + \dim(\operatorname{Nu}(g))$.

Ejercicio 12. Sea $n \in \mathbb{N}$ y sean $A, B \in \mathbb{R}^{n \times n}$. Demostrar que si $\operatorname{rg}(A) = n - 1$ entonces $\operatorname{rg}(A \cdot B) \ge \operatorname{rg}(B) - 1$.

Ejercicio 13. Sea $A \in \mathbb{C}^{2\times 2}$ tal que $m_A(x) = x^2 + 1$. Demostrar que A es semejante a la matriz $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Ejercicio 14.

(a) Hallar todos los valores de $a,b\in\mathbb{C}$ para los cuales la matriz

$$A = \begin{pmatrix} 1+a & 0 & 1\\ -1-a+b & b & -1\\ -a & 0 & 0 \end{pmatrix} \in \mathbb{C}^{3\times 3}$$

no es diagonalizable.

(b) Para los valores hallados en el item anterior, determinar la forma de Jordan J de A y hallar una matriz $C \in GL(3, \mathbb{C})$ tal que $A = CJC^{-1}$.

Ejercicio 15. Sea $f: \mathbb{C}^8 \to \mathbb{C}^8$ una transformación lineal tal que dim $(\text{Nu}(f-3\text{Id})^2)=4$, dim $(\text{Nu}(f+2\text{Id})^2)=2$, dim $(\text{Nu}(f+2\text{Id})^3)=3$ y tal que 2 es autovalor de f. Determinar las posibles formas de Jordan de f.