

PROGRAMA - AÑO 2023					
Espacio Curricular:	Geometría Analítica (M106)				
Carácter:	Obligatorio	Período	1º semestre		
Carrera/s:	Licenciatura en Ciencias Básicas con orientación en Física y en Matemática Articulación con FCAI, FING e Instituto Balseiro				
Profesor Responsable:	: Silvia RAICHMAN				
Sede Central: Silvia RAICHMAN Gisela FITT Extensión Áulica San Martín: Gabriela CUADRO Equipo Docente: Extensión Áulica Valle de Uco (virtual): Silvia RAICHMAN Gisela FITT Extensión Áulica Malargüe (virtual): Silvia RAICHMAN Gisela FITT					
Carga Horaria: 80 Hs. (40 Hs Teóricas; 40 Hs Prácticas)					
Requisitos de Cursado	Tener regularizada Introducción al Álgebra Lineal (M104) ó Introducción al Álgebra Lineal parte I (M104A) e Introducción al Álgebra Lineal parte II (M104B)				

1-EXPECTATIVAS DE LOGRO

Conocer los conceptos básicos de la Geometría Analítica plana y en el espacio. Obtener y utilizar expresiones analíticas de curvas y superficies aplicables a formas geométricas utilizadas en diversas ciencias.

2-DESCRIPTORES

Sistemas de coordenadas. Planos. Rectas. Cónicas. Cuádricas. Propiedades geométricas. Superficies y curvas en el espacio.

3- CONTENIDOS ANALÍTICOS

UNIDAD 1: VECTORES, ÁLGEBRA VECTORIAL

Revisión de contenidos: Vectores. Adición de vectores. Multiplicación de un vector por un escalar. Espacios vectoriales reales. Combinación Lineal. Dependencia e independencia lineal. Conjunto generador. Base. Dimensión. Coordenadas de un vector respecto de una base dada. Módulo o norma de un vector. Vector unitario o versor. Producto escalar. Propiedades. Ángulo entre dos vectores. Condición de ortogonalidad. Proyección ortogonal de un vector sobre un eje. Producto vectorial. Propiedades. Producto mixto. Propiedades. Bases ortonormales. Aplicaciones.

UNIDAD 2: PLANOS Y RECTAS.

Planos. Distintas formas de la ecuación de un plano. Distancia de un punto a un plano. Posiciones relativas de dos planos. Ángulo entre dos planos. Familias de planos que pasan por la intersección de dos planos dados. Rectas en el plano y en el espacio. Distintas formas de la ecuación de la recta. Posiciones relativas de dos rectas. Distancia de un punto a una recta. Distancia entre dos rectas. Ángulo entre dos rectas. Ángulo entre recta y plano. Familias de rectas. Familias de rectas que pasan por la intersección de dos rectas dadas. Aplicaciones en Ciencias.

UNIDAD 3. CÓNICAS.

Definición general de cónica. Circunferencia. Ecuaciones paramétrica, vectorial y cartesiana de la circunferencia. Traslación de los ejes coordenados. Ecuación general de la circunferencia. Familias de circunferencias. Parábola, elipse e hipérbola: ecuaciones vectoriales, cartesianas, paramétricas. Familias de parábolas, de elipses y de hipérbolas. Traslación de ejes coordenados. Ecuaciones generales. Posiciones relativas entre una recta y una cónica. Ecuación de la recta tangente a una cónica por un punto perteneciente a la misma y por un punto exterior. Propiedades y aplicaciones de las cónicas.

UNIDAD 4. SUPERFICIES.

Superficie esférica. Plano tangente a una esfera. Superficies cilíndricas. Superficies cónicas. Superficies regladas. Superficies de revolución. Superficies cuádricas con y sin centro. Elipsoide. Hiperboloide de una hoja. Hiperboloide de dos hojas. Paraboloide elíptico. Paraboloide hiperbólico. Ecuaciones paramétricas. Aplicaciones en Ciencias.

UNIDAD 5. COORDENADAS POLARES, CILÍNDRICAS Y ESFÉRICAS.

Sistema de coordenadas polares. Relaciones entre coordenadas cartesianas ortogonales y coordenadas polares. Ecuaciones polares de rectas y circunferencias. Ecuaciones polares de las cónicas. Gráficas de ecuaciones en coordenadas polares. Otras curvas: espirales, lemniscatas, caracoles, rosas. Coordenadas cilíndricas. Relaciones entre coordenadas cartesianas ortogonales y coordenadas cilíndricas. Coordenadas esféricas. Relaciones entre coordenadas cartesianas ortogonales y coordenadas esféricas. Aplicaciones en Ciencias.

UNIDAD 6. ECUACIÓN GENERAL DE SEGUNDO GRADO.

Ecuación general de segundo grado en 2 variables: forma matricial; forma cuadrática asociada; rotación de los ejes coordenados; teorema de los ejes principales. Identificación de secciones cónicas. Ecuación general de segundo grado en 3 variables: forma matricial; forma cuadrática asociada; rotación de los ejes coordenados; teorema de los ejes principales. Identificación de superficies cuádricas. Aplicaciones en Ciencias.

4- BIBLIOGRAFÍA

Bibliografía Básica			
Autor	Título	Editorial	Año
A. Engler, D. Müller, S. Vrancken, M. Hecklein	Geometría Analítica	Ediciones UNL	2005
G. Fuller, D. Tarwater	Geometría Analítica	Addison Wesley Iberoamericana	1999
J. Kindle	Teoría y Problemas de Geometría Analítica Plana y del Espacio	Mc Graw Hill	2005
A.M. Kozac, S. Pastorelli, P. E. Vardanega	Nociones de Geometría Analítica y Álgebra lineal	Mc Graw Hill Interamericana. EdUtecNA	2007
Ch. Lehman	Geometría Analítica	Limusa	1993
Z. Menna Goncalves	Geometría Analítica del Espacio. Enfoque Vectorial	Limusa	1981
E. Oteyza, E. Lam, C. Hernández, A. Carrillo, A. Ramirez	Geometría Analítica	Pearson Educación	2005
S. Raichman, E. Totter	Geometría Analítica para Ciencias e Ingenierías	Ex-Libris	2013
D. Riddle	Geometría Analítica	Thomson International	1997
L. Santaló	Vectores y Tensores con sus Aplicaciones	Eudeba	1977
A. Sunkel	Geometría Analítica en forma vectorial y matricial	Nueva Librería	2005

Libros electrónicos:

Geometría analítica para Ciencias e Ingenierías. Raichman, S.R.; Totter, E.; (2023). Mendoza, Argentina: Editorial Qellqasqa. 338 p.; ISBN 978-987-4026-83-5. http://qellqasqa.com/omp/index.php/qellqasqa/catalog/book/ISBN%20978-987-4026-83-5.

Geometría analítica para Ciencias e Ingenierías: Problemas integradores y de aplicación. S. Raichman, E. Totter, D. Videla, L. Collado, F. Codina, G. Molina, I. Cascone, G. Fitt. (2022). Mendoza, Argentina: Editorial Qellqasqa. 103 p.; ISBN 978-987-4026-62-0. http://gellqasqa.com/omp/index.php/gellqasqa/catalog/book/ISBN%20978-987-4026-62-0.

Bibliografía Complementaria

.~	Autor	Título	Editorial
Año			
H. Anton, C.	Introducción al Álgebra Lineal	Limusa Wiley	2011
Rorres			
J.W. Downs	Practical Conic Sections	Dover Publications	2003
S., Grossman, J. Flores Godoy	Algebra Lineal	Mc. Graw Hill	2012

G.Nakos,D.Joyner	Algebra Lineal con Aplicaciones	International Thomson Editores	1999
J. Trias Pairó	Geometría para la informática gráfica y CAD	Alfaomega	2005

5- METODOLOGÍA DE ENSEÑANZA Y EVALUACIÓN DURANTE EL CURSADO

Metodología de enseñanza:

Se toman como puntos de partida los conceptos del aprendizaje como construcción, el aprendizaje significativo y la autogestión del aprendizaje. Las actividades se desarrollan en base al planteo de situaciones problema, la observación, el análisis, la reflexión, la integración, la aplicación, la interacción, la síntesis, la inventiva y la búsqueda de información bibliográfica.

Se establece como espacio virtual de trabajo, el Espacio Virtual de Geometría Analítica en Plataforma Moodle FCEN: http://moodle.fcen.uncu.edu.ar/moodle/. En dicho espacio virtual (GA2023), se ponen a disposición de los estudiantes recursos específicos de acuerdo a los contenidos a abordar en cada eje temático. En una *Guía de Estudio y Actividades* por eje temático se dan indicaciones de los pasos a seguir, referidas a lecturas en el texto, utilización de los recursos y actividades disponibles en el aula virtual, actividades incluidas en la Guía de Trabajos Prácticos y tareas a entregar. En las *Guías de Estudio y Actividades* se indican también las fechas de cierre de los cuestionarios y/o entregas del período correspondiente. Los videos que se ponen a disposición de los estudiantes, están asociados a la integración de conceptos y procedimientos y a la interpretación geométrica de contenidos que se desarrollan en el curso. Los recursos denominados Tests son cuestionarios con retroalimentación inmediata para los estudiantes. Se realizan actividades sincrónicas para la revisión de contenidos conceptuales y procedimentales, que enriquecen la interacción y potencian el aprendizaje. En las mismas, se plantea la resolución de problemas, habilitando la participación activa, comprometida y responsable del estudiante.

Se dispone del Libro Interactivo Geometría Dinámica, realizado con el software Geogebra (https://www.geogebra.org/m/zsvdbqju 2022), que incluye una serie de actividades de aprendizaje para ser elaboradas con la utilización de herramientas computacionales interactivas, incluidas en cada uno de ellos, denominadas Recursos Geométricos Interactivos (RGIs). Dichos Recursos Geométricos Interactivos han sido diseñados para favorecer la visualización y comprensión de conceptos de la Geometría Analítica plana y espacial. Las actividades mencionadas están destinadas a potenciar el aprendizaje, desarrollando capacidades de tipo exploratorio, de visualización, de comprensión y de reflexión.

Se estimula el razonamiento, el pensamiento crítico y la confrontación de ideas como procesos en la construcción de conocimientos. Se trabaja con una guía de trabajos prácticos para cada unidad temática, con el propósito de orientar las actividades de los alumnos a los objetivos planteados. A partir de las actividades y de los recursos didácticos y comunicacionales disponibles, se promueve el desarrollo de las capacidades lógicomatemáticas y de resolución de problemas de la geometría analítica plana y espacial. Los estudiantes elaboran un Trabajo Integrador de Contenidos (TIC), que es presentado como requisito para la acreditación del espacio curricular. Cada Trabajo Integrador debe cumplir con las consignas establecidas para el presente ciclo lectivo.

Evaluación durante el cursado:

A los efectos de obtener la condición de regularidad de la asignatura, se plantean exámenes parciales a lo largo del curso y exámenes de recuperación. Las instancias de evaluación mencionadas son escritas, de carácter teórico-práctico. Se realizan en función de los contenidos enseñados, en las fechas previstas y con el nivel de dificultad desarrollado en

clase y en las guías de trabajos prácticos. Se evalúa la capacidad de transferir y aplicar conocimientos, al mismo tiempo que se estimula al estudiante a mejorar su capacidad de comunicación escrita.

El sistema de evaluación permite hacer correcciones durante el proceso de enseñanza y aprendizaje, ratificar o rectificar estrategias durante el desarrollo de la asignatura y da la oportunidad de reajustar la dirección de los esfuerzos, tanto de los docentes como de los alumnos. Las instancias de evaluación son:

- ✓ Dos exámenes parciales: son exámenes escritos de carácter teórico-práctico en los que se incluyen los temas desarrollados hasta la semana previa a la instancia de evaluación. Se aprueban con un mínimo de 60 puntos.
- ✓ Recuperación de uno de los dos exámenes parciales: en el caso de no haber aprobado sólo una de los dos exámenes parciales, el alumno rinde un examen recuperatorio del examen parcial no aprobado, que se aprueba con un mínimo de 60 puntos.
- ✓ Un examen Global: en el caso de no haber aprobado los dos exámenes parciales, el alumno tiene la posibilidad de rendir un examen recuperatorio Global, en el que se incluyen todos los temas evaluados en los dos parciales. Este examen Global se aprueba con un mínimo de 60 puntos.
- ✓ Tests en el Espacio Virtual: Se plantea la elaboración y presentación de actividades implementadas en el Espacio Virtual de Geometría Analítica, cada una de las cuales se aprueba con un mínimo de 60 puntos.

6- CONDICIONES DE REGULARIDAD TRAS EL CURSADO

Para obtener la condición de alumno regular en la asignatura, el alumno debe cumplir con:

- ✓ Aprobación de las instancias de evaluación de acuerdo a lo descripto en el punto anterior.
- ✓ Elaboración y presentación de los Tests implementados en el Espacio Virtual de Geometría Analítica en la plataforma Moodle FCEN.
- ✓ Elaboración de los ejercicios de la Guías de Trabajos Prácticos.
- ✓ Elaboración del Trabajo Integrador de Contenidos.

Aquel alumno que no cumpla con estas condiciones quedará en condición de alumno Libre.

7- SISTEMA DE APROBACIÓN Y/O PROMOCIÓN DEL ESPACIO CURRICULAR

asignatura, que se aprueba también con un puntaje mínimo de 60 puntos. En caso de no aprobar el examen de promoción, el estudiante no pierde la condición de regularidad y accede a un examen final para acreditar la asignatura. En la instancia de coloquio para promoción el alumno presenta el Trabajo Integrador de Contenidos y los desarrollos correspondientes a los ejercicios complementarios.

El alumno Libre debe rendir un examen final que consta de un examen escrito que se aprueba con un puntaje mínimo de 60 puntos en cada eje temático y un examen oral que se aprueba con un mínimo de 60 puntos.

PROMOCIONABLE (Marque con una cruz la respuesta	SI	X	NO	
correcta)				

Habiendo cumplido las condiciones especificadas para obtener la regularidad de la asignatura, el alumno está en condiciones de rendir un examen final para lograr la aprobación de la misma. Para el examen final, el alumno debe presentarse con el Trabajo Integrador de Contenidos (TIC) y la resolución completa de los ejercicios complementarios, ya que éstos forman parte de esta instancia de evaluación. El examen final es escrito y oral, teórico y práctico. Se evalúan la totalidad de los temas desarrollados durante el cursado, independientemente que se hayan evaluado o no en las instancias de evaluaciones parciales. Esta instancia de evaluación está planteada como una actividad de síntesis e integradora de los contenidos. La condición de aprobación implica el dominio de los contenidos conceptuales y procedimentales de todas las unidades temáticas del programa de la asignatura, así como también de las aplicaciones prácticas y la articulación de contenidos entre sí, trabajados durante el cursado.

Para aquellos estudiantes que hayan cumplido con un mínimo del 75% de las actividades implementadas en el Espacio Virtual de Geometría Analítica, y hayan aprobado en primera instancia los exámenes parciales para acceder a la condición de regularidad, podrán rendir un examen escrito y oral, a los efectos de alcanzar la condición de promoción

Mg. Silvia Raquel Raichman

Prof. Jorge CATALDO Director CGCB-CEN FCEN-UNCUYO